

ZDS3000/4000 系列示波器用户手册

目 录

1.	安全须知	д	6
	1.1	一般性安全概要	6
	1.2	警示标志	7
	1.3	测量类别	8
	1.4	仪器安置注意事项	9
	1.5	保养与清洁	9
2.	前言		10
	2.1	固件升级说明	.10
3.	产品简介	۲	11
	3.1	产品选型	.11
	3.2	ZDS3000/4000系列示波器主要特色	.12
	3.3	系统框图	.13
	3.4	文档中的内容约定	.13
4.	切换语言		14
5.	快速入门]	15
	5.1	概述	.15
	5.2	用前准备	.15
	5.3	探头知识	.17
	5.4	面板介绍	.19
	5.5	快速使用示例	.33
	5.6	帮助信息	.37
6.	大数据存	₽储	39
	6.1	概述	.39
	6.2	深存储的重要性	.39
	6.3	深存储触发机制	.39
	6.4	深存储的设置	.39
	6.5	zExplore 波形缩放	.40
7.	亮度调节	5	45
	7.1	概述	.45
	7.2	设置波形和网格强度	.45
8.	余辉调节	5	46
	8.1	概述	.46
	8.2	余辉调节方式	.46
9.	采集信号	<u>1</u> 7	48
	9.1	概述	.48
	9.2	设置垂直系统	.48
	9.3	设置水平系统	.51
	9.4	设置采样系统	.59
10	. 波形触	发	60
	10.1	概述	.60
	10.2	触发控制	.61

	10.3	复制到搜索	64
	10.4	模板触发	64
	10.5	触发设置	67
	10.6	与触发类型相关的触发设置	71
11.	光标测	皇 里	86
	11.1	概述	86
	11.2	一键光标的使用	86
12.	"真正意	义"参数测量统计	88
	12.1	概述	88
	12.2	何谓真正意义的参数测量统计?	89
	12.3	测量统计	89
	12.4	测量项设置	89
	12.5	硬件频率计	100
	12.6	测量范围	100
	12.7	测量导出	101
	12.8	测量设置	101
	12.9	阈值设置	102
13.	波形搜	索	104
	13.1	概述	104
	13.2	信源选择	104
	13.3	搜索模式	104
	13.4	搜索类型	104
	13.5	复制到触发	105
	13.6	搜索结果显示	105
	13.7	搜索与波形缩放综合运用	106
	13.8	搜索毛刺信号实例	107
14.	波形标	注	109
	14.1	概述	109
	14.2	自定义标注(手动标注)	109
	14.3	自动标注	110
15.	协议解	码	111
	15.1	概述	111
	15.2	操作步骤	112
	15.3	解码各项设置	116
	15.4	CAN-FD 解码实例	119
	15.5	I ² C 解码实例	121
	15.6	UART/RS232/422/485 解码实例	126
16.	Trace	。】一键轨迹	130
	16.1	概述	130
	16.2	具体使用	130
17.	FIR 硬作	F实时滤波器	133
	17.1	概述	133
	17.2	通道源	133
	17.3	滤波触发/显示	133

	17.4	滤波频率	134
	17.5	运用实例	134
18.	数学运	算	136
	18.1	概述	136
	18.2	模式选择	136
	18.3	基本运算	136
	18.4	高级运算	138
	18.5	趋势图	142
19.	FFT 运算	争	146
	19.1	概述	146
	19.2	FFT 样本点数	146
	19.3	运算界面	147
	19.4	信源选择	147
	19.5	窗函数	148
	19.6	显示模式	149
	19.7	单次运算	149
	19.8	频谱图水平调节	149
	19.9	具体实例应用步骤	149
	19.10	FFT 频谱表操作	151
	19.11	相关公式	151
20.	分段存	储	152
	20.1	概述	152
	20.2	分段存储原理	152
	20.3	分段设置	152
	20.4	实例应用: 8小时振荡检测试验	154
21.	参考波	形	156
	21.1	概述	156
	21.2	选择当前通道	157
	21.3	选择信源	157
	21.4	暂存波形/清除波形	157
	21.5	垂直档位/偏移	158
	21.6	参考波形文件的导出/导入	158
22.	存储与	导入	160
	22.1	概述	160
	22.2	存储	160
	22.3	一键存储	166
	22.4	报表生成	167
	22.5	导入	171
23.	系统辅助	助设置	173
	23.1	概述	173
	23.2	LAN 设置	173
	23.3	语言	174
	23.4	触摸屏	174

	23.5	系统设置	174
	23.6	系统信息	176
	23.7	恢复出厂设置	176
	23.8	时间设置	177
	23.9	自校准	178
24.	常见问题	题及应对方法	179
	24.1	具体问题阐述	179
25.	ZDS300	0/4000 系列示波器技术参数	180
	25.1	垂直系统	180
	25.2	水平系统	180
	25.3	采样系统	181
	25.4	触发系统	181
	25.5	触发种类	182
	25.6	解码种类	
	25.7	测量参数	185
	25.8	波形数学运算	185
	25.9	显示特性	186
	25.10	输入/输出端口	186
	25.11	普通技术规格	186
	25.12	配件	187
26.	免责声	明	188

1. 安全须知

为保证您能正确安全地使用本仪器,请务必遵守以下注意事项。如果未遵守本手册指定 的方法操作本仪器,可能会损坏本仪器的保护功能。因违反以下注意事项操作仪器所引起的 损伤,广州致远电子有限公司不予以承担责任。

1.1 **一般性安全概要**

了解下列安全性预防措施,以避免受伤,并防止损坏本产品或与本产品连接的任何产品。 为避免可能的危险,请务必按照规定使用本产品。

使用正确的电源线

只允许使用所在国家认可的本产品专用电源线,中国大陆规格: 3×0.75mm2, Φ6.3, IEC 6022753, L=1500mm,大烟斗三插+品字尾, CCC 认证。

将产品接地

本产品通过电源电缆的保护接地线接地。为避免电击,在连接本产品的任何输入或输出端子 之前,请确保本产品电源电缆的接地端子与保护接地端可靠连接。

正确连接探头

探头地线与地电势相同。请勿将地线连接至高电压。

查看所有终端额定值

为避免起火和过大电流的冲击,请查看产品所有的额定值和标记说明,请在连接产品前查阅 产品手册以了解额定值的详细信息。

使用合适的过压保护

确保没有过电压(如由雷电造成的电压)到达该产品,否则操作人员可能会遭受电击。

请勿开盖操作

请勿在仪器机箱打开时运行本产品。

使用指定规格的电源保险丝

如需更换电源保险丝,请将仪器返厂,由致远电子授权的维修人员更换符合本产品指定规格 (T级,额定电流 5A,额定电压 250V)的保险丝。

避免电路外露

电源接通后,请勿接触外露的接头和元件。

防止触电危险

电源线必须插在墙壁上或在可视范围内的具有保护地的插排上,不可插在引线混乱的插排上, 插排不可过流使用。

怀疑产品出故障

怀疑产品出故障时,请勿拆装把手处的螺钉,避免划伤。产品出现任何问题,请勿进行**拆机** 操作,请及时联络广州致远电子有限公司授权的维修人员进行检测、维护、调整或零件更换。

保持适当的通风

通风不良会引起仪器温度升高,进而引起仪器损坏。使用时应保持良好的通风,定期检查通 风口和风扇。

请勿在潮湿环境下操作

为避免仪器内部电路短路或发生电击的危险,请勿在潮湿环境下操作仪器。

请勿在易燃易爆的环境下操作

为避免仪器损坏或人身伤害,请勿在易燃易爆的环境下操作仪器。

请保持产品表面的清洁和干燥

为避免灰尘或空气中的水分影响仪器性能,请保持产品表面的清洁和干燥。

防静电保护

静电会造成仪器损坏,应尽可能在防静电区进行测试。在电缆连接到仪器前,应将其内外导体短暂接地以释放静电。

注意搬运安全

为避免仪器在搬运过程中滑落,造成仪器面板上的按键、旋钮或接口等部件损坏,请注意搬运安全。

1.2 警示标志

注意符号表示存在危险。提示用户对某一过程、操作方法或类似情况进行操作时,如果 不按照说明书的要求操作,则可能对产品造成损坏或者丢失重要数据。在完全阅读和充分理 解说明书**注意**所要求的事项之前,请不要继续操作。

(1) 示波器面板中的图标的意义:

\wedge	安全警示	_ <u>¯</u>	探头补偿接地端	L	探头补偿 输入端
\bigcirc	电源开关标志	•	USB 数据接口		使用期限为40 年,可回收利用
X	请勿将使用过的 仪器丢入垃圾桶	CE	CE 认证		
All inputs 1	MΩ~16pF 300Vrms CA	ΓΙ; 50Ω ≤5Vrms	所有通道均有 1MΩ/ 电容。示波器信号输 规格,即最大输入大	50Ω 的输入电阻 入端具有 300V 1 、电压不能超过 3	切换, 16pf 的输入 ms "CAT I"等级 00V RMS(有效值)。

(2) 测量类别介绍:

测量类别有 CAT I、CAT II、CAT III 和 CAT IV, 主要的介绍如下所示:

测量类别	测量类别显示	说明	备注	
I/O	CAT I	为适用于在不直接与 电网电源连接的电路 上进行的测量。	在不由电网电源供电的电路上和作了特殊保护由电 网供电的电路上的测量	
П	II 为适用于在直接与低 近行的测量。 进行的测量。		在家用电器上、便携式工具上和类似设备上的测量。	
III CAT III 为适用于在建筑物设施中进行的测量。		为适用于在建筑物设 施中进行的测量。	在配电板上、断路器上、布线上包括电缆、汇流条上、 接线盒上、开关上、固定设施的输出插座上、工业用 设备上以及其他设备上,例如与固定设施永久连接的 驻立式电动机上的测量。	
IV	CAT IV	适用于在低压设施的 源端处进行的测量。	在初级过流保护装置上和纹波控制单元上的测量	

注: CAT I 指在没有直接连接到主电源的电路上进行测量。例如,对没有从主电源导出的电路,特别 是受保护(内部)的主电源导出的电路进行测量。在后一种情况下,瞬间应力会发生变化。因此,用户应 了解设备的瞬间承受能力。

警告符号表示存在严重危险。提示用户对某一过程、操作方法或类似情况进行操作时, 如果不能正确执行或遵守规则,则可能造成人身伤害甚至死亡。在完全阅读和充分理解警 告所要求的事项之前,请不要继续操作。

1.3 测量类别

ZDS3000/4000 系列示波器可在 CAT I 下进行测量,最大输入电压需保持在 CAT I 300Vrms 范围内。

ZDS3000/4000 系列示波器仅允许在指定的测量类别中使用。

ŀ

8 >> 产品用户手册

1.4 仪器安置注意事项

仪器安置场所相关注意事项如下:

●远离恶劣环境。远离阳光直射、热源、大量烟尘、蒸汽、腐蚀性或可燃性气体、强烈磁场 源、高压设备与动力线、水、油、化学剂的场所;

●**水平平坦**。请将仪器安置在水平平坦的场所,以便更好地观察测量结果;

•通风良好。为了保证示波器内部有良好的通风,在仪器的后面板有散热孔的设计,可使示 波器在运行时,内部温度不会过高;请确保进气和排气区域无阻塞并有自由流动的空气。为 保证充分的通风,在工作台机架中使用示波器时,请确保其两侧、上方、后面应留出至少 10 厘米的间隙。

1.5 **保养与清洁**

保养

请勿将仪器放置在长时间受到日照的地方。

清洁

请根据使用情况对仪器进行清洁。方法如下:

●断开电源;

●用潮湿但不滴水的软布(可使用柔和的清洁剂或清水)擦试仪器外部的浮尘。清洁 液晶显示屏时,注意不要划伤透明的 LCD 保护屏。

产品重新通电之前,请务必确认产品已经干燥,避免因留有的水分造成不必要的事故。

2. 前言

2.1 固件升级说明

示波器功能在不断地迭代更新,不断地完善,下载最新固件并安装,可了解和使用最新的功能。以下为 ZDS3000/4000 系列示波器的固件下载路径及安装方法。

ZDS3000/4000 系列示波器**固件下载路径**: http://www.zlg.cn/osc/down/down/id/135.html ZDS3000/4000 系列示波器**固件升级步骤**【请严格按下述步骤操作】:

1. 将升级包解压,并确保解压后的 "ZDS3000/4000" 文件夹在 U 盘根目录下,即 U 盘中的目录为 ZDS3000/4000\code;

图 2.1 升级包解压

- 插入升级U盘,给示波器上电,开机,示波器会自动进入升级界面,升级需要几 分钟,请耐心等待;若等待一段时间后未进入升级界面,请检查文件是否在U盘 根目录下,在此注意请使用USB2.0,FAT32格式的U盘进行操作。
- 3. 升级完成后,蜂鸣器会响,到此升级完成,拔出U盘,重新启动示波器即可。

【注意事项】

- 升级过程中不能拔插 U 盘或断电,否则可能会导致升级失败,请按固件升级步骤 2 重新升级。
- 升级完成后,依次按"Utility"、"系统设置"、"系统信息",可查看当前机器的版本,可依此来判断是否升级成功。
- ZDS3000/4000 系列固件仅适应于 ZDS3000/4000 系列示波器。

3. 产品简介

ZDS3000/4000系列示波器是 ZLG 致远电子继 ZDS2000系列示波器后全新推出的数据 挖掘型高性能示波器,除了继承原有的强大参数测量、统计功能和全面的触发、解码功能外, 在存储深度上打造新高度,拥有史无前例的深存储和高波形刷新率,以及创新性的 zExplore 的波形探测功能,是 500M 示波器中功能较为齐全并具有突破性指标的代表,可广泛应用于 通信、航天、国防、嵌入式系统、计算机、研究和教育等众多行业和领域。

图 3.1ZDS4054 Plus 示波器面板

ZDS3000/4000 系列示波器拥有全新的触屏功能,可通过触摸的方式完成复杂操作,兼 具深度定制优化和舒适灵活的旋钮手感,带给客户全新的体验。

图 3.2 触屏功能效果图

3.1 产品选型

ZDS3000/4000 系列示波器包括 ZDS4054 Plus、ZDS4034 Plus、ZDS4024 Plus、ZDS3054

Plus、ZDS3034 Plus、ZDS3024 Plus 型,相关参数如下表 3.1 所述。

피묘	ZDS4054	ZDS4034	ZDS4024	ZDS3054	ZDS3034	ZDS3024
空亏	Plus	Plus	Plus	Plus	Plus	Plus
模拟带宽	500MHz	350MHz	200MHz	500MHz	350MHz	200MHz
通道	4	4	4	4	4	4
采样率	4GSa/s	4GSa/s	4GSa/s	4GSa/s	4GSa/s	4GSa/s
刷新率	1M	1M	1M	330K	330K	330K
存储深度 ^並	512Mpts	512Mpts	512Mpts	250Mpts	250Mpts	250Mpts
参数测量	53 种	53 种	53 种	51 种	51 种	51 种
触发种类	40 种					
协议解码	30 余种					
FFT 样本点数	4M	4M	4M	4M	4M	4M
波形搜索种类	12 种					
FIR 硬件实时 滤波器	支持	支持	支持	支持	支持	支持
屏幕大小	9 英寸触摸 屏					

表 3.1 产品选型表

注:存储深度每两通道复用。以ZDS4054 Plus 为例,CH1和CH2 独立共用512Mpts,CH3和CH4 独 立共用另外的512Mpts。只打开单通道时,该通道最大存储深度可达512Mpts,若同时打开相对应的两个通 道,则每个通道最大存储深度均为256Mpts。同理,采样率的分配原则也是两通道共用,以ZDS4054 Plus 为例,CH1和CH2 独立共用4GSa/s,CH3和CH4 独立共用另外的4GSa/s。只打开单通道时,该通道最大 采样率可达4GSa/s,若同时打开相对应的两个通道,则每个通道最大采样率均为2GSa/s。

3.2 ZDS3000/4000 系列示波器主要特色

- ▶ 500MHz、350MHz、200MHz 带宽,4GSa/s 采样率;
- ▶ 标配了最高 512Mpts 海量存储深度;
- ▶ 标配 13 种基础触发, 30 种协议触发, 30 余种协议解码类型;
- ▶ 标配了最高 1Mwfms/s 的波形刷新率;
- ➤ 4Mpts的FFT分析功能;
- 又 ZOOM 波形缩放功能。可同时使用两个 ZOOM 窗口对多个波形细节进行多方 位对比分析;
- ▶ 最多 53 种"真正意义"参数测量统计。通过 FPGA 全硬件并行处理,基于原始的 采样点,对全存储深度的波形进行测量;
- ▶ 波形搜索功能。支持边沿、脉宽、欠幅、上升/下降时间、周期/频率和占空比多种 搜索条件,结合"双 ZOOM"与"大旋钮"功能可快速查看和定位异常信号;
- 波形播放功能。在 ZOOM 模式下使用波形播放功能快速浏览波形信号的全局,变 化趋势等;
- ▶ 分析功能。ZDS3000/4000 系列示波器标配有电源分析功能、分段存储功能、FIR 硬件滤波功能以及 Wave Analyze 波形综合分析软件功能等,可以辅助分析波形信

号,快速找到问题;

- ▶ 9英寸 TFT 彩色触摸显示屏,分辨率 800×480,并具有优化的 256 级灰度等级显示;
- ▶ 支持 USB Host、USB Device、LAN、VGA 等接口,支持程控设备标准命令(SCPI), 为仪器的二次编程控制提供丰富通信接口。

3.3 系统框图

ZDS3000/4000 系列示波器使用超大容量 FPGA 结合 SOC 平台,全硬件加速实现了最高 512Mpts 大数据存储、最大 1,000,000 帧/秒的高波形刷新率、硬件滤波、自动参数测量及波 形搜索标记等功能,极大增强和改善了示波器的性能。示波器的系统框图如下图 3.3 所示。

图 3.3 ZDS3000/4000 系列示波器系统框图

3.4 文档中的内容约定

ZDS3000/4000 系列包括: ZDS4024 Plus、ZDS4034 Plus、ZDS4054 Plus、ZDS3024 Plus、ZDS3034 Plus、ZDS3054 Plus。除特别注明外,本手册的说明主要以ZDS4054 Plus 示波器指标为例。

4. 切换语言

ZDS3000/4000 系列示波器提供中英文使用界面切换,具体请执行下列操作: 点击【Utility】进入系统设置界面,示波器语言默认为中文,点击【语言切换】软键可 切换为英语,再点击可切换回中文,如图 4.2 所示。

图 4.1 系统信息

图 4.2 语言切换界面

5. 快速入门

5.1 概述

本章以 ZDS4054 Plus 为例,从最基本的操作开始介绍,讲解示波器的前/后面板信息,结合快速使用示例可了解和掌握示波器的基本操作,相关内容如下所述。

5.2 用前准备

(1) 检查

检查示波器主机及其配件无缺漏和无损坏后,可进行操作,主机与配件清单如下表 5.1 所示。

序 号	名 称	数量	单位	实例图
1	示波器 ZDS4054 Plus	1	台	
2	示波器探头,ZP1050	4	套	
3	USB 通讯电缆,A-B,双 磁环,L=1500mm	1	根	
4	国标电源线,L=1500mm	1	根	
5	光盘	1	张	
6	合格证	1	张	
7	用户说明书	1	本	<u> </u>
8	售后服务指南	1	张	ZDS4000系列 数据控制型法者面 新設計算用 新設置用 新設計算用 新設計 新設計
9	校准报告	1	张	

表 5.1 主机与配件清单

注:2通道示波器标配2套示波器探头。

(2) 上电

使用所在国家认可的本产品专用电源线进行上电操作,如图 5.1 所示。

图 5.1 上电操作

(3) 功能检测

功能检测的目的是为了验证示波器是否正常工作。

(1) 按下电源按键开机启动,点击【Default Setup】,此时所有的配置参数将恢复默认状态,具体可参考表 5.9。

图 5.2 默认设置

(2)恢复默认状态后,可接入信号,使用普通无源探头与面板上的"探头补偿端"进行连接,如下图 5.3 所示。

图 5.3 探头连接

使用 ZP1050 型号的探头(由于公司探头会不断地更新升级,最终以实际标配的实物为准),示波器自动识别衰减档位 X10 档,比率为 10:1 (无 X1 档),接入示波器中(将探头母

16 >> 产品用户手册 |

头 BNC 端对准示波器通道 CH1 BNC 插头,按下向右旋转即可,同时将探头的探钩接到示 波器探头补偿端接口,鳄鱼夹接地),具体如图 5.3 所示。

注:若探头接入的不是 CH1 而是 CH2、CH3 或 CH4,则按下面板上的【1】软键,软键变灰则关闭通道1,按下【2】、【3】或【4】软键则打开相应通道则软键变亮,如图 5.3 所示。

(3) 接入探头补偿端信号后,点击【Auto Setup】一键捕获波形,此时屏幕上可能会出现图 5.4 所示三种波形其中一种,探头补偿端方波幅值约为 3.3V,频率为 1KHz。

图 5.4 探头补偿信号

如果出现上图所示的过补偿或欠补偿现象的波形,请进行探头的**低频补偿**调节,具体如下节 5.3 探头知识内容所介绍。

5.3 探头知识

标配的 ZP1050 无源高阻抗示波器探头可在输入阻抗为 1MΩ(并联 9pF 的电容)的示 波器上使用,通过补偿,它可以用在 10-35pF 输入电容的示波器上。探头设计为 10 倍的衰 减,示波器可自动识别探头的衰减比例,具体配件如下图 5.5 所示。

图 5.5 探头及其配件

注:探头配件有线标、接地弹簧、探钩、补偿调节棒、绝缘护套1、绝缘护套2、鳄鱼夹。

带宽(-3 dB)	DC-500MHz
上升时间(10% - 90%)	700 ps
衰减比	10:1 (固定)
输入阻抗 (端接到 1MΩ 时)	10MΩ±2%
输入电容	9pF±2 pF
最大输入电压	300VRMS CAT II
示波器补偿范围	10-35 pF
安全性	符合 EN 61010-031 CAT II
电缆长度	140±2cm
操作环境	0 至 50℃,0 至 80% RH
存储环境	-20 至 60°C, 0 至 90% RH

表 5.2 ZP1050 探头参数表

5.3.1探头补偿

为何会出现如图 5.4 所示的过补偿和欠补偿现象。原因是没有对探头进行低频补偿调节, 使用任一无源探头与示波器首次相连均须进行低频补偿,以便与示波器通道的输入特性匹配, 否则可能导致显著的测量误差。以标配的 500M 无源探头 ZP1050 为例说明低频补偿步骤。

(1) 将探头 BNC 母头(带检测探针,见图 5.6)连接到示波器的 BNC 输入通道 1 中,探钩接到示波器前面板的"探头补偿端"。按下【Auto Setup】一键捕获,示波 器将自动识别探头比率为 10:1,波形以较好的效果显示在屏幕上。

图 5.6 自动识别探头比率

- (2) 波形在屏幕上显示 2~3 个信号周期且信号所占垂直刻度为 2 至 6 格。可以在示 波器的屏幕上看到如图 5.4 所示三种波形其中的一种,若出现过补偿和欠补偿现象 则需要进行探头的低频补偿调节。
- (3) 用"低频补偿调节棒"旋转调节低频补偿调节孔,如图 5.7 所示,直到方波顶 部最平坦(注意低频补偿调节是在探头补偿端接入补偿信号的情况下方可进行)。

图 5.7 探头补偿调节孔

ZDS3000/4000 系列示波器

注:示波器的【探头比率】自动识别为 X10 档,带宽为 500MHz。最大电压值不可超过 300V 的有效 电压(这里指的是低频信号范畴)。

5.4 面板介绍

5.4.1前面板/后面板总览

ZDS4054 Plus 数字示波器**前面板**如图 5.8 所示,包括操作按键/旋钮和 I/O 接口等功能 简介如表 5.3 所示。ZDS3000/4000 系列示波器带触摸显示屏,可使用全屏触摸的方式进行 操作,操作简便。

图 5.8 ZDS4054 Plus 型台式示波器前面板

表 5.3 前面板功能简

序号	名称	功能描述	使用说明
(1)	LCD	带触摸的液晶显示屏	9 英寸的彩色触摸显示屏
(2)	菜单功能执行键	用于执行显示界面里的菜单选择操作	"长按"软键可弹出选项的解释
(3)	多功能旋钮区	主要用于菜单、光标、波形亮度、余辉时间的选择和调节,与 MATH 和 REF 的波形调节等	旋钮可顺时针或逆时针调节, 【A】、【B】旋钮主要进行"菜单 选择"或数值调节 【A】为"细 调",【B】为"粗调"
(4)	快捷功能键	主要实现一键清除、一键轨迹、一键截屏 和 FIR 硬件滤波的功能	均属按键操作,"长按"软键可弹 出选项的解释
(5)	波形探测区	波形探测区主要进行波形测量、搜索、波 形标记、波形缩放以及分段存储功能; 水平控制区用于波形/缩放窗口水平时基的 调节,和波形/缩放窗口水平偏移的调节	在缩放状态,大旋钮配合水平旋 钮对缩放窗口和波形进行调节。 水平控制区旋钮可顺时针或逆时 针调节,"大旋钮"调水平时基, "小旋钮"调水平偏移
(6)	运行控制键区	用于启动或停止示波器的采样,示波器测 量的自动设置,恢复示波器的默认设置	均属按键操作

续上表

序号	名称	功能描述	使用说明
(7)	夕井能协制区	执行 Decode (协议解码)、Digital	构属控键攝作
	多功能江南区	算)、Ref(参考波形设置)等功能	场周3处延床中
(8)	垂直控制区	垂直方向波形的偏移和波形的缩放	旋钮可顺时针或逆时针调节,"大旋钮" 调节波形的高矮,"小旋钮"调波形垂直 偏移
(9)	触发控制区	设置触发功能	旋钮可顺时针或者逆时针调节触发电平 的位置
(10)	外触发输入端	用于输入外部的触发信号源 注:最大输入电压 CAT I 300Vrms	接入方式:将外部接口的 BNC 母头接入 示波器外触发输入的 BNC 端,向右旋转 套住即可
(11)	模拟通道输入端	接入须测量的模拟信号 注:最大输入电压 CAT I 300Vrms	接入方式:将探头的 BNC 母头接入示波 器模拟输入的 BNC 端,向右旋转,两接 口卡住即连接成功
(12)	探头补偿器信号 接地端	接地端子	将探头的鳄鱼夹连接至接地端子即可
(13)	探头补偿器信号 输出端	输出 1kHz,约 3Vpp 方波信号	将探头的探钩接入输出端口即可
(14)	USB Host 接口	用于连接 U 盘以进行外部存储	将 standard A 类型的 USB 直接插入 USB Host 接口即可使用
(15)	电源按键	用于关闭和开启电源	按键操作

注:所有按键在打开使用时软键变亮,关闭不使用时按键变灰,灯灭无亮度。

ZDS4054 Plus 型台式示波器的后面板如图 5.9 所示。

安全锁:用户可使用安全锁将示波器锁在固定位置。沿与后面板垂直的方向对准图 5.9 中的"防盗锁孔"将锁头插入,顺时针旋转钥匙锁定示波器,然后拔出钥匙。注意,不要将 其它物品插入防盗锁孔以免损坏仪器。

- 注: ◎ 可调支架:调节示波器的倾斜角度,便于更好的操作和观察显示屏,向外打开支撑 脚让示波器倾斜或向内关闭支撑脚让示波器直立。
 - ◎ 触发输出:将连接线的 BNC 母头接口与触发输出接口连接,顺时针旋转,两接口卡 住即可。
 - ◎ VGA 接口: 该接口可用于外接显示器。
 - ◎ LAN 接口:将网线接口对准 LAN 接口连接,可进行网络通讯。
 - ◎ USB Device: 将 standard B 类型 USB 线接入 USB Device 接口即可使用。

◎ AC 电源插口:将符合规定的电源线对准电源接口连接即可。(注意事项见"一般性 安全概要")

5.4.2前面板各区操作解析

(1) 软键

软键区说明如下图 5.10 所示。

图 5.10 软键区

(2) 多功能旋钮区

多功能旋钮区的按键和旋钮如下图 5.11 所示。多功能旋钮区主要用于波形灰度显示、 亮度调节和波形光标测量的调节。

图 5.11 多功能旋钮区面板

表 5.4 多功能旋钮区按键功能

按键名称	功能
旋钮 A	 旋钮 A 可用于如下用途: 主菜单的选择。旋转旋钮 A 可选中菜单,短按旋钮 A 可确认选择。 触发/解码参数修改。旋转旋钮 A 远中需修改的参数项,短按旋钮 A 可弹出可选的 选项。 参数值细调。顺时针方向旋转旋钮 A,则参数数值以较小步进增大;逆时针方向 旋转旋钮 A,则参数数值以较小步进减小。 移动光标。在光标测量功能中,旋转旋钮 A 可移动 A 光标的位置,短按旋钮 A 可 开启 AB 联动模式同时移动 AB 光标,再次短按旋钮 A 则关闭 AB 联动模式。 注: 旋钮 A 左上方的指示灯变亮,则旋钮 A 可用。
【Persist】	 【Persist】"一键余辉"键,主要操作如下: 点击【Persist】,可打开余辉功能; 通过旋转旋钮 A 或旋钮 B 对余辉时间进行选择,若在 5 秒钟内不进行选择操作则 余辉界面自动关闭; 余辉时间选项: OFF、100ms、200ms、500ms、1s、2s、5s、10s、20s、50s、无限; 选择完毕后再次点击【Persist】则关闭余辉界面。
[Select]	【Select】光标切换按键,点击【Select】可切换 X 光标和 Y 光标。
[Cursors]	【Cursors】为"一键光标",按下【Cursors】键打开光标测量功能菜单。点击【Cursors】键,会在"显示 X 型光标"、"同时显示 X 型和 Y 型光标"、"关闭光标"三种显示类型间进行切换。 点击【Select】切换可操作的光标,短按 A 或 B 旋钮可启动联动光标。
【intensity】	【intensity】为波形亮度/网格亮度的调节。旋钮 A 调节波形亮度, 旋钮 B 调节网格亮度, 两者默认亮度为 50%, 可调节范围为 0%至 100%, 步进为 10%。

续上表

按键名称	功能	
按键名称	功能 旋钮 B 可用于如下用途: 参数值粗调。旋钮 B 用于粗调参数数值。 对话框操作。旋转旋钮 B 可在对话框里切换选择对象,短按旋钮 B,则令选中的选项生效; 测量项选择操作。在测量项选择对话框里,旋转旋钮 B 可选择不同测量项,短按旋	
旋钮 B	 (3) 量次起并保持。在164重次运并为由福重,成有规值 B 可选中测量项; 移动光标。在光标测量功能中,旋转旋钮 B 可移动 B 光标的位置,短按旋钮 B 可 开启 AB 联动模式同时移动 AB 光标,再次短按旋钮 B 则关闭 AB 联动模式。 操作 FFT 频谱表。在 FFT 运算功能里,旋钮 B 用于操作 FFT 频谱表,短按旋钮 B 用于选中频率点,旋转旋钮 B 则在不同频率点里进行选择; 协议解码事件表的光标操作。在协议解码事件表里操作光标,在停止状态,短按旋 钮 B 可将触发点定位在指定的事件; 调节模板位置。模板触碰功能/模板测试功能开启后,当进行模板位置调节时,旋 钮 B 可调节模板的位置;进行模板大小调节时,旋钮 B 可调节模板的宽度和高度; 	

(3) 波形探测区

波形探测区的面板如下图 5.12 所示,波形探测区主要用于对波形进行测量、搜索、缩放、分段存储和标记。水平控制区主要用于波形时基档位和波形偏移的调节(包括主时基和 副时基)。

图 5.12 波形探测区

表 5.5 波形探测区功能

按键名称	功能	
波形缩放	按下该键可使时基显示模式在"缩放模式 (ZOOM)"和"标准模式"之间切换。	
【 Measure 】	【Measure】键可打开测量菜单,其支持时间、电压等 53 种参数测量,最多可在菜单选择 24 种测量参数同时显示。	
【Search】	用户根据需要设置搜索条件,示波器自动搜索所需信号并标记搜索结果,搜索结果上方为 白色空心倒三角。搜索的模式有边沿、脉宽、上升/下降时间、周期、频率、占空比、欠幅。	

│ 产品用户手册 << 23</p>

续上表

按键名称	功能	
[Seg]	【Seg】为分段存储功能,可将存储深度分为多等分进行存储,可通过左右导航键可查 看各段波形数据。	
标注功能	主要用于对感兴趣的波形信号进行手动标注或对已有标记进行手动清除。	
【Acquire】	【Acquire】键为水平时基菜单键,按下该键可打开水平控制菜单,并设置【时基模式】、 【存储深度】、【捕获模式】和【显示设置】等。	
大旋钮	其主要用于波形的快速偏移,具有力矩反馈的作用,该旋钮转动幅度越大,力矩越大,	
(快速偏移旋钮)	形移动越快。	
左右导航键	 该按键可用作标注导航定位,当波形标注功能开启后,短按【<<】键定位到上一 个标注事件,短按【>>】键定位到下一个标注事件。 该按键还可用于在进行波形播放时波形播放方向、速度的调节,点击向左/右导航 键可改变播放速度和方向。 	
波形的播放和停止	 该旋钮主要是在缩放模式下播放主时基中存储的波形,在副时基可观察波形播放的动态,副时基窗口波形疏密程度由缩放窗口大小控制。 在波形播放时可通过点击导航键调节播放速度和方向,点击次数越多,播放速度越快,反向导航键可进行减速操作,当速度减为0时,将往反方向播放。 	
时基偏移旋钮	 非缩放模式下: 旋转时基偏移旋钮即改变触发点的位置,转动旋钮时所有通道的波形水平移动,并且触发点相对屏幕中心左右水平移动。 短按时基偏移旋钮,波形的触发偏移复位,即水平偏移量为0,再次短按时基偏移旋钮则波形触发偏移往左偏移6小格。 缩放模式下: 时基偏移旋钮可用于调节缩放窗口的移动,点击该旋钮可将缩放窗口跳回到主时基的屏幕中心位置。 时基偏移旋钮也可用于主时基波形的移动,短按该旋钮可将波形触发偏移将复位。 	
时基档位旋钮	 非缩放模式下:水平时基是指水平时间基准,即示波器每格对应的时间。顺时针转动旋钮减小时基,逆时针转动旋钮则增大时基。修改水平时基的过程中,所有通道的波形扩展或压缩显示。 缩放模式下:主要用于调节缩放窗口的大小/主时基波形的时基档位。 	
视图窗口切换	 当切换到常规显示视图(主时基)时,水平调节区和大旋钮用于调节主时基波形的档位和偏移。 当切换到缩放显示视图(ZOOM)时,水平调节区和大旋钮用于调节缩放窗口的大小和偏移。 	

(4) 快捷功能区

快捷功能区的面板如下图 5.13 所示,快捷功能区主要对波形进行【一键清除】、【一键 轨迹】、【硬件滤波】和【一键截屏】的操作。

图 5.13 快捷功能区面板

表 5.6 快捷功能菜单键介绍

按键名称	功能
一键清除	点击【Clear】可清除当前波形、余辉显示、测量参数统计数据和标记点等。
一键轨迹	点击【Trace】可以保持当前的轨迹,方便后期观察和对比。
硬件滤波	点击【Filter】可进入硬件滤波界面进行滤波设置。
一键截屏	点击【Print Screen】会以图像形式自动保存当前屏幕显示的内容到指定存储器。

(5) 运行控制区

运行控制区被用于控制示波器采样的运行/停止,功能参数的复位。运行控制区内的各按键如下图 5.14 所示。

图 5.14 运行控制区

表 5.7 运行控制区功能

按键名称	功能	
【Run/Stop】	该按键控制波形采样的运行或停止。当波形采样功能处于"运行"状态时,该按键为 绿色背景灯;当波形采样功能处于"停止"状态时,该按键为红色背景灯。	
【Auto Setup】	【Auto Setup】为一键捕获键,用户可按下【Auto Setup】键,会自动设置各参数,以 产生适合观察的波形显示。一键捕获后的参数设置可参考表 5.8。	
【Single】	【Single】为单次触发键,按下该键后,示波器将一直等待,直至出现符合触发条件 波形时,进行一次触发并记录存储波形,然后停止波形采样。	
【Default Setup】	 【Default Setup】为恢复默认设置键,按下该键后,恢复示波器基本设置参数的 默认值,如:垂直参数、水平参数、触发参数等。 在"Utility"菜单【系统】中,还有"出厂设置"选项,可用于恢复全部出厂设 置。恢复出厂设置是将所有参数恢复到默认设置。 注意【Default Setup】按键是除了【Utility】、存储/导入菜单中的参数以及示波器 自动测得的探头衰减比参数外,其它的参数都恢复到默认值,可参考表 5.9。 	

功能补充:

当前【Auto Setup】的通道显示策略为:当所有通道都关闭时,会对所有通道进行扫描,但只对有信号的通道进行自动捕获;当有通道开启时,只对打开的通道进行自动捕获。

按下【Auto Setup】键后,各系统设置的各个参数的状态如表 5.8 所示。

设置值 参数 垂直系统 垂直量程档位 使用定标后的结果 垂直偏移 使用定标后的结果 DC 通道耦合 带宽限制 关闭 探头类型及探头比率 保持不变 档位调节 粗调 反相功能 关闭 延迟校正 保持不变 水平系统 时基模式 Y-T 存储深度 自动 捕获模式 标准 水平时基档位 根据定标确定的触发源通道的信号频率决定 水平偏移 0 ns 关闭 双时基模式 双 ZOOM 模式 关闭 自动滚动 ON 触发系统 触发方式 自动 触发类型 边沿触发 边沿类型 上升沿 若通道1定标成功,则固定使用通道1;若通道 触发源 1为直流信号而通道2测频成功,则使用通道2 为触发源,同理类推适用于3、4通道 触发释抑 0 ns 触发灵敏度模式 自动 触发耦合 直流 光标测量 若 X 型光标有效,则在定标成功后, X 型光标自动卡在触发源通道靠近 屏幕中央一个周期的范围。

表 5.8 一键捕获后的设置

注: 按下【Auto Setup】键后,可按下【BACK】按键打开**撤销**菜单;用户在 如右图所示菜单里选择"**撤销"**,即可撤销按下【Auto Setup】执行的自动设置, 并恢复上一次的配置。

图 5.15 撤销

按下【Default Setup】键后,各系统设置的各个参数的默认值如下表 5.9 所示。

表 5.9 默认值

水平设置相关参数的	默认值	
时基档位	1 μs/div	
水平偏移	0 ns	
缩放模式	关闭	
时基模式	Y-T	
捕获模式	标准	
储存深度	自动 1.4Mpts	
垂直设置相关参数的	默认值	
垂直档位	1V/div	
垂直偏移	0mV	
CH1 开关	打开	
CH2 开关	关闭	
CH3 开关	关闭	
CH4 开关	关闭	
通道耦合	直流	
带宽限制	关闭	
探头比	1×	
通道反相	关闭	
档位调节	粗调	
探头类型	电压探头	
垂直扩展	相对地	
触发设置相关参数的	默认值	
触发类型	边沿	
触发通道	CH1	
边沿类型	上升沿	
触发方式	自动	
触发耦合	直流	
触发释抑	Ons	
灵敏度模式	自动	
触发电平	0mV	
模板触发	关闭	
模板通道	CH1	
显示设置相关参数的默认值		
显示类型	线	
余辉时间	关闭	
网格亮度	50%	
色温模式	关闭	
波形亮度	50%	
冻结显示	关闭	

续上表

光标设置相关参数的	默认值
光标使能	关闭
光标模式	垂直
光标类型	X1
数学运算设置相关参数	的默认值
功能使能	关闭
模式选择	基本运算
算子选择	+
信源 A	CH1
信源 B	CH1
反相	关闭
测量设置相关参数的	默认值
功能使能	关闭
阈值设置	10% 50% 90%
通道选择	CH1
测量项设置	空
频率计相关参数的黑	大认值
频率计功能	关闭
搜索设置相关参数的	默认值
功能使能	关闭
搜索模式	边沿、上升沿
阈值设置	同测量设置
通道选择	CH1
解码设置相关参数的	默认值
功能使能	关闭
解码类型	UART
协议触发	OFF
自动阈值	ON
协议参数	默认值
显示方式	十六进制
细节显示	ON
事件表	关闭
功能使能	关闭
通道使能	REF1
当前通道	REF1
信源选择	CH1

注:断电启动恢复、Auto Setup、Default Setup、恢复出厂设置

断电启动恢复、Auto Setup、Default Setup、恢复出厂设置的恢复操作有所不同,详见下述内容:

- 示波器断电重新启动后,自动恢复断电前示波器的所有设置参数(示波器每20s自动保存一次设置参数);
- Auto Setup 是示波器内部自动调整垂直通道的档位、偏移、水平通道的时基档位等(详见表 5.8),使 输入信号以适合观察的方式显示;

- Default Setup 只是将绝大部分参数恢复成默认值,而不是将所有值恢复成默认值,比如,用户在 Utility 中设置的以太网的 IP 等,详见表 5.9;
- 恢复出厂设置是将示波器的所有参数恢复成默认值。
 - (6) 多功能控制区

多功能控制区域如图 5.16 所示,区域内的按键功能如表 5.10 所示。

图 5.16 多功能控制区

表 5.10 多功能控制区

按键名称	功能	
【 Math 】	【Math】为数学运算功能键,按下【Math】打开数学运算菜单,可实现通道波形的多种数学运算,包括 基本运算、高级运算和趋势图运算。 该按键 灯亮 则指示数学运算功能已激活。	
【FFT】	用户可使用 FFT 快速傅立叶变换功能,将信号从时域转换到频域上进行分析。	
【Save/Recall】	【Save/Recall】为存储与导入菜单键,按下【Save/Recall】键,可打开存储与导入菜单, 在菜单里可将示波器的波形数据、设置信息、屏幕图像保存,或是将已保存的设置或波 形数据导入示波器。	
【Utility】	【Utility】为辅助功能键,点击可进入系统设置界面设置系统的信息,如语言设置,时间设置等。	
【Analyze】	点击【Analyze】可使用模板测试功能。	
[Digital]	【Digital】为数字逻辑分析仪功能键。	
【Ref】	【Ref】为参考波形设置键,按下【Ref】键,可打开参考波形菜单。对于四通道示波器 最多可设置五个参考波形,分别为 REF1、REF2、REF3、REF4、REF5。	
[Decode]	【Decode】为协议解码功能键,按下【Decode】键,可进入协议解码设置菜单。	
(7) 7		

(7) 垂直控制区

垂直控制区如图 5.17 所示,用于在垂直方向上控制波形的位置、波形的扩展或压缩显示。垂直控制区的按键功能说明如表 5.11 所示。

图 5.17 垂直控制区

表 5.11 按键功能

按键名称	功能	
垂直量程调节旋钮	旋转该旋钮可修改对应通道的 垂直量程档位 。逆时针转动增大档位,顺时针转动减 小档位,旋转过程中波形显示幅度会增大或减小,同时屏幕下方的垂直档位信息实 时变化,短按旋钮可切换垂直量程调节方式为粗调或微调。 注:若在调节垂直档位时波形会大幅度往上/或往下偏移,则波形缩放以"地"为中 心参考,此时可点击【Utility】进入辅助菜单,选择【系统】后点击【系统设置】将 【波形扩展】方式改为"相对中心",波形缩放将以屏幕的中心为参考进行缩放。	
通道 1~4 菜单键	按下通道菜单键可打开对应通道的菜单,并开启对应通道;再次按下通道菜单键则 关闭对应通道。屏幕中通道1波形和标签用 黄色 标识,通道2波形和标签用 绿色 标 识,通道3波形和标签用 蓝色 标识,通道4波形和标签用 紫色 标识。	
垂直偏移旋钮	旋转该旋钮可修改对应通道的 垂直偏移 ,顺时针转动增大偏移,逆时针转动减小偏移。旋转过程中,屏幕中的波形会上下移动,同时屏幕下方的偏移信息实时变化。 短按该旋钮可复位垂直偏移。	

(8) 触发功能区

触发功能区如图 5.18 所示, 触发功能区的按键功能如表 5.12 所示。

图 5.18 触发功能区

表 5.12 触发功能区

按键名称	功能	
	 点击可进入触发菜单,用户可设置触发方式、触发类型和触发设置等信息。 	
触发菜单键	● 触发类型可选择边沿触发、斜率触发、脉宽触发、视频触发或具体的协议触发来	
	获取稳定的波形。	
	 触发电平偏移旋钮如图 5.18 所示,用于设置触发电平大小。顺时针转动旋钮, 	
舳尖山亚伯孜选知	增大触发电平即触发电平线往上偏移; 逆时针转动旋钮, 则减小触发电平即触发	
朏 及电干'''师'Ø 灰垃	电平线往下偏移。	
	● 按下触发电平偏移旋钮可快速将触发电平设置到相应触发通道波形的 50%位置。	
	● 按下按键,使触发方式在自动(Auto)、普通(Normal)触发模式之间进行切换。	
【Auto/Normal】	● 自动触发模式下,无论是否满足触发条件都采集波形并显示。	
	● 普通触发模式下,只有在满足触发条件时才会采集并显示波形。	
强制触发按键	当在设置触发条件下,久久不能触发时,可使用强制触发,使信号可以快速的触发并	
	采集。	

(9) 外触发输入端

外触发输入端如图 5.8中标注(10)处所示,外部触发输入可用作**边沿触发**的触发源, 外部触发**输入通道阻抗**为1MΩ。

(10) 模拟通道信号输入端

如图 5.8 ZDS4054 Plus 型台式示波器前面板中标注(11)处显示,是示波器的信号输入端,输入阻抗为 1MΩ/50Ω 可切换。

(11) 探头补偿信号接地端

如图 5.8 ZDS4054 Plus 型台式示波器前面板中标注(12)处显示,为探头补偿信号接地端,用于探头补偿信号地线输入。

(12) 探头补偿信号信号输入端

如图 5.8 ZDS4054 Plus 型台式示波器前面板中标注(13)处显示,为探头补偿信号输入端,用于探头补偿信号的输入端。

(13) USB Host 接口

本示波器前面板提供了一个 USB Host 接口用于连接 U 盘进行外部存储,如图 5.8 ZDS4054 Plus 型台式示波器前面板中标注(14)处所示。

(14) 电源键

如图 5.8 ZDS4054 Plus 型台式示波器前面板中标注(15)处所示,是示波器的电源键。 按一下电源键,即可快速开启/关闭示波器电源。

5.4.3**面板组件**

(1) 显示界面

ZDS3000/4000 系列示波器的显示界面为一块 9 英寸的 TFT 彩色触摸显示屏,分辨率 800×480,如图 5.19 所示。示波器显示界面在水平方向上共有 14 大格,在垂直方向上有 8 大格。

图 5.19 面板组件

表 5.13 面板组件信息介绍

面板名称	说明
通道耦合状态	通道耦合状态提供 DC、AC、GND 三种方式。
探头比率	显示所使用的电压探头/电流探头的探头比率。
触发耦合	触发耦合提供直流、交流、低频抑制和高频抑制耦合四种方式。
	● 三者的关系如下:存储深度=采样率*捕获时间。
	● 当存储深度设为固定存储深度(即存储深度为固定值)时,
台堵苏时间 当前页	当调大水平时基档位即捕获时间逐渐增大,采样率会被迫
芯油获时间、 当时不 送卖 友健返度	下降,但是存储深度不会改变。
什平、什帕休皮	● 当存储深度设为自动时,所有捕获到的波形都会显示在屏
	幕上,当水平时基档位改变时,存储深度与捕获时间相互
	适应调节改变,若存储深度不足采样率将会被迫下降。
时基模式	X-T、X-Y 和 ROLL 三种

面板组件中的工作状态有以下几种:

表 5.14 工作状态说明

工作状态显示	说明
Auto	自动触发模式下,无信号时强制触发显示 Auto
Run	预触发过程,显示 Run
Stop	示波器进入停止工作状态时显示 Stop
Trig	有效触发后显示 Trig
Wait	等待触发时,显示 Wait

面板组件中的波形捕获方式有以下几种:

32 >> 产品用户手册 |

捕获模式显示	说明
Norm	标准捕获模式
Peak	峰值捕获模式
Avg	平均捕获模式
H-Res	高分辨率捕获模式

表 5.15 捕获模式显示

示波器的触发源有以下几种:

图 5.20 触发源显示

5.5 快速使用示例

用户可参考下述示例,快速了解 ZDS4504 Plus 示波器的使用步骤(以下操作均可以使用触屏功能完成)。

(1) 上电开机。

连接上电源线后,按下电源开关键,启动开机。

(2) 设置菜单语言。

如果用户习惯英文环境,可按下【Utility】键,点击【系统】选择【系统设置】,将 菜单【语言】设置为英文,再按下【Utility】键可关闭相关的菜单显示。

(3) 将探头连接至探头补偿端。

探头连接示波器如图 5.3。

图 5.21 探头接线图

(4) 一键捕获。

按下【Auto Setup】键,系统自动定标,快速捕获输入信号的波形,用户可清晰看到 波形,若出现欠补偿或过补偿现象,请使用低频补偿调节棒调节探头补偿端直至屏 幕上出现顶部平坦的方波,并以此方波为例进行观察,如图 5.4。(有关探头补偿请 参照 4.3 的探头知识)

致远电子

(5) 稳定波形。

点击"触发控制区"的【Auto/Normal】键,触发方式由 "Auto" 切换到"Normal", 并调节"触发电平旋钮"将触发电平调至波形中央使波形稳定触发和显示。

(6) 设置显示信息。

- ◇ 点击【Acquire】可进入水平时基界面,可对各项参数进行设置;
- ◇ 点击右侧相应软键【显示模式】进入显示设置界面,选择【余辉时间】,旋转旋钮 A 可选择余晖时间,短按旋钮 B 可选择完成;
- ◇ 【色温】【冻结显示】【清除余辉】等操作同理。若对所显示的信息不理解,可 长按对应的软键,可弹出相应解析;
- ◇ 点击面板上的【Intensity】按键,可调出【波形亮度】和【网格亮度】界面,旋转旋钮 A 可调节波形亮度,调节旋钮 B 可调节网格亮度。
- (7) 波形调整。

可使用"水平控制区"与"垂直控制区"的旋钮调节波形的缩放与移动。

- ◇ 旋转大旋钮可以调节波形水平或垂直的缩放,即胖瘦与高矮的调节;
- ◇ 旋转小旋钮可以改变水平或垂直的零点位置,使波形在水平或垂直方向发生偏移,短按小旋钮可回到中心点位置。

图 5.22 波形调整区

- (8) 存储深度设置。
 - ◇ 点击【Acquire】进入水平时基调节界面,旋转旋钮 A 选中【储存深度】,并短按 旋转 A 可选择所需的存储深度;
 - ◇ 旋转旋钮 A 选择存储深度为 512Mpts,并短按旋钮 A 即可确认选择,可根据自己的需求进行选择。

图 5.23 存储深度的调节

(9) 触发设置。

- ◇ 点击【Trigger】进入触发设置界面,点击菜单右侧相应软键【触发方式】切换为 "普通"(可长按右侧相应软键查看功能说明);
- ◇ 点击菜单右侧相应软键【触发类型】,旋转旋钮A可选中触发类型"边沿触发", 短按旋钮A即可完成;
- ◇ 点击菜单右侧相应软键【触发源】,旋转旋钮 A 可选中"通道 1",短按旋钮 A 即可选择"通道 1",【边沿类型】选择"上升沿"符号;
- ◇ 选择【触发灵敏度】为"自动";
- ◇ 选择【触发耦合】为"直流"即可完成触发设置。

(10) 参数测量。

- ◇ 点击【Measure】进入测量显示界面,点击【测量统计】选择 "ON"可显示测量 值的当前值、最大值、最小值、平均值等,或者选择 "OFF"只显示当前值;
- ◇ 点击【测量选项选择】,点击【通道源】,旋转旋钮 A 可选中"通道 1",短按旋钮 A 即可选择"通道 1";
- ◇ 在【测量选项选择】界面中,旋转旋钮 B 可框选所测的选项,短按旋钮 B 可确 认选择所测的参数如"峰峰值"、"幅度"、"最大值"、"最小值"等,点击【返回】, 可返回屏幕界面观察所测的参数值(也可选【电压】、【时间】进行批量测量);
- ◇ 选择完所要测量的参数后,可对测量数据进行导出处理,点击【测量导出】进入 导出界面,选择保存的类型为"CSV"或"网页报表",选择保存路径为本地存 储或者是外部存储(即U盘),点击【保存文件】可导出测量数据。
- (11) 基本运算。
 - ◇ 点击"多功能控制区"的【Math】进入数学运算界面,选择【模式选择】旋转旋钮A选择【基本运算】,短按旋钮A即可确认完成;
 - ◇ 点击【算法选择】,可以选择 "+、-、x、÷、微分、积分"中的任意一项。本次 选择最常用的 "+"法;

◇【信源 A】选择"CH1",【信源 B】也可以选择"CH1"或者其他,根据自己的 需求进行选择;

设置完以上的参数运算已经完成。

- ◇ 可对运算后的波形进行调整。【垂直档位】、【垂直偏移】可以适当调节运算后的 波形垂直显示情况。
- (12) FFT 运算。
 - ◇ 为了对更多的信号进行 FFT 分析,需设置存储深度,点击【Acquire】选中【存储深度】,旋转旋钮 A 选中 512M,短按旋钮 A 即可确认完成;
 - ◇ 调节"时基档位旋钮"将时基档位调至 50ms/div 即可;
 - ◇ 点击【FFT】进入 FFT 显示界面,配置【通道源】为 "CH1",【窗函数】选择 "矩形窗",【显示设置】为 "dBm";
 - ◇ 点击【停止】后将进入运算;
 - ◇ 运算完成后可点击"频谱图水平调节"软键,旋转旋钮 A 可调节频谱图的水平 档位,旋转旋钮 B 可调节频谱的水平偏移;
 - ◇ 此时可查看频谱视图区的右侧为频谱表,可以观察前 20 大的频率列表,旋转旋
 钮 B 可逐一查看,短按旋钮 B 可使频谱图的中心显示该频率点的频谱信息。
- (13) 协议解码。
 - ◇ 输入协议信号如 UART 协议,点击【Auto Setup】一键捕获波形,点击 【Auto/Normal】键,将触发方式改为"Normal",旋转"触发电平偏移旋钮"将 触发电平线调至波形中央;
 - ◇ 点击【Acquire】进入水平时基界面,点击【储存深度】,旋转旋钮 A 选择 512Mpts (或其他的存储深度),调节"时基档位旋钮",将时基调至 1ms/div 左右即可;
 - ◇ 点击【Decode】进入解码界面,点击【解码类型】旋转旋钮 A 选中 UART 协议, 短按旋钮 A 确认选择,点击【触发使能】为"ON"即将协议触发打开,点击【协 议参数】进入协议参数配置界面,将 UART 信号的【信源选择】、【波特率】、以 及【数据模式】和【电平反相】等配置好(若需了解对应设置的意思可旋转旋钮 A 选中后长按旋钮 A 即可弹出对应解析);
 - ◇ 点击【事件表】为 "ON" 状态,即可查看解码的列表。
- (14) 波形捜索。
 - ◇ 输入 1KHz 的方波信号,点击【Auto Setup】一键捕获波形,点击【Auto/Normal】 键,将触发方式改为"Normal",旋转"触发电平旋钮"将触发电平线调制波形 中央;
 - ◇ 点击【Acquire】进入水平时基界面,点击【储存深度】,旋转旋钮 A 选择 512Mpts (或其他的存储深度),调节"时基档位旋钮",将时基调至 50ms/div 左右即可;
 - ◇ 点击【search】进入搜索界面,点击【搜索模式】可选择"边沿"搜索方式,【搜 索类型】为上升沿,可看到波形上方出现白色空心三角符号为合搜索条件的波形。
- (15) 波形缩放。
 - ◇ 根据以上(14)的波形搜索例子,查看波形细节,点击"波形缩放"按钮,进入 波形缩放界面;
- ◇ 可点击【1|2】"窗口切换"按键选择所要调节的时基窗口,蓝色框为可调节选框, 选中副时基窗口并顺时针旋转"时基档位旋钮"将缩放窗口调小,并使用"时基 偏移旋钮"将缩放窗口定位到某个搜索结果上,并顺时针调节"时基档位旋钮" 即缩放窗口不断缩小,此时可以看到波形细节倍不断放大,可在副时基窗口观察 波形细节;
- ◇ 点击"窗口切换"按钮,可以通过水平旋钮调节主时基波形的缩放和偏移。
- (16) 文件存储。
 - ◇ 点击【Save/Recall】选择【存储】进入存储界面,点击【存储类型】旋转旋钮 A 选择所需的存储类型,短按旋钮 A 确认选择;
 - ◇ 点击【存储路径】,旋转旋钮 B 可以配置存储的路径为"外部存储"或者"本地存储",短按旋钮 B 可以进入相应的文件夹,点击返回即可完成存储路径设置;
 - ◇ 点击【存储文件名】、【命名方式】可以选择【时间】或【输入】,选择【时间】 和【自动增加】为"ON"状态则会自动以时间顺序进行命名,选择【输入】,则 需要用户自己输入文件名,在输入界面使用"旋钮 B"可选择所需的字符,短按 旋钮 B 可确认输入,输入完成后点击【返回】可返回存储界面后,点击【保存 文件】即可保存文件。

5.6 帮助信息

用户若需要了解菜单功能,可长按菜单功能对应的菜单功能执行键,大约1秒后,弹出帮助信息,如图 5.24 所示。再按下任意键,则帮助信息消失。

长按对应的菜单软键可弹出相应的解析

图 5.24 菜单功能的帮助信息

用户若需要了解**按键功能**,可长按按键功能键,大约1秒后,弹出帮助信息,如图 5.25 所示。再按下任意键,则按键帮助信息消失。

长按旋钮或者按键可弹出按键功能的解析

图 5.25 按键帮助信息

6. 大数据存储

6.1 概述

ZDS4054 Plus 示波器最高具有 4GSa/s 的采样率,1M wfm/s 的波形刷新率以及最大 512Mpts 的存储深度,实现了大数据存储,开启数据挖掘与分析新时代。

6.2 深存储的重要性

在波形的采集中,若存储深度足够,则能以高采样率捕获长时间波形,若存储深度不足,则只能通过降低采样率的方式来捕获长时间波形。

捕获时间 T 和采样率 Fs、存储深度 N 三者必然满足如下关系式:

$$N = Fs * T$$
(1)
T = N/Fs (2)

根据上述公式,当存储深度 N 一定时,要想捕获更长时间的波形,只能降低采样率 Fs, 但若 Fs 过低,则可能导致采集到的波形失真,更坏的情况是若 Fs 低于被测信号的 2 倍,根 据奈奎斯特采样定理,将存在混叠现象,此时显示的波形具有迷惑性,是不可靠的。

为了保证信号采集的准确性,一般采样率要在信号频率的4~5倍左右,所以增大存储深度可以在高采样率的条件下,采集更长时间的波形信号,且不丢失波形细节,这就是深存储存储的重要性。

6.3 深存储触发机制

如图 6.1 所示,示波器的存储区分为**预触发**和后触发存储区,分别记录触发点前后的波形。用户可通过调节"水平偏移旋钮"来改变触发点

的位置,从而调整预触发存储区和后触发存储区的比例。当用户需要关注触发前发生的事件时,则需要增 大预触发存储区的比例;此时,示波器的存储深度越 大,则可观察区间更长,有利调试快速定位问题。

6.4 深存储的设置

图 6.1 存储深度和可观察区间

存储深度默认状态下为"自动"1.4Mpts的存储深度,若想存储长时间波形需进行手动 设置存储深度,点击【Acquire】进入水平时基调节界面,选择【存储深度】,旋转旋钮 A 选 中 512Mpts的存储深度,短按旋钮 A 确认选择,【存储区域】可选择自动或者固定,如图 6.2 所示。

图 6.2 存储深度配置

注: 其中 CH1 和 CH2 共用 512Mpts, CH3 和 CH4 独立共用另外的 512Mpts。当同时打开 CH1 和 CH2 或者同时打开 CH3 和 CH4 时储存深度最大为 256Mpts;只打开单个通道时,储存深度最大可选择 512Mpts, 或者同时打开 CH1 和 CH3 (CH1 和 CH4、CH2 和 CH3、CH2 和 CH4)时,储存深度最大可选择 512Mpts。

6.5 zExplore 波形缩放

大数据存储能够在捕获长时间波形时仍然维持高采样率,确保波形不失真,但我们不能 仅仅满足于波形不失真,而是要让示波器自动或者便捷地去分析波形中存在的异常,让用户 不费吹灰之力,便可查阅数百万个波形中存在的异常信号。

图 6.3 zExplore 面板

6.5.1 波形缩放

波形缩放功能既展现了整个波形的概况,也能显示局部波形的细节,ZDS3000/4000 系 列示波器通过强大的多片 FPGA 阵列高速并行处理,实现海量数据实时响应的缩放模式。 点击"波形缩放"按键,可进入波形缩放界面,如下图 6.4 所示。

图 6.4 波形缩放

此时显示屏分为两部分。显示屏的上半部分是常规显示视图,常规显示视图也被称为主 时基;下半部分是缩放显示视图,缩放显示视图是常规显示视图指定区域波形的放大显示, 缩放显示视图也被称为副时基。

(1) 单 ZOOM 与双 ZOOM 缩放模式

ZDS3000/4000 系列示波器提供单/双的缩放窗口模式,可同时显示两个缩放窗口视图,可同时分析不同部位的波形细节。

点击【Acqurie】进入水平时基界面,【双 ZOOM】为"OFF",则进入单 ZOOM 显示如 图 6.5 所示,【双 ZOOM】为"ON",则进入双 ZOOM 显示如图 6.6 所示。进入缩放模式后, 点击"窗口切换"按键,切换可调窗口,被选中窗口颜色为蓝色选框,可对该窗口的波形进 行水平时基调节或水平偏移调节。

缩放区域

图 6.5 单 ZOOM 模式

图 6.6 双 ZOOM 显示模式

(2) 缩放模式波形水平时基调节

进入缩放模式后可对选中的"蓝色"选框视图的波形进行调节。若选中的为常规模式则 可调节波形的水平扩展和压缩;若选中的为缩放视图模式,则可调节缩放窗口大小来查看波 形细节。

图 6.7 水平控制区

(3) 缩放模式下波形平移

大旋钮和时基偏移旋钮可用于主时基波形或副时基缩放窗口的偏移调节,以观察不同位置的波形情况,如下图 6.8 所示。

图 6.8 波形/缩放窗口偏移

大旋钮用于主时基波形和副时基缩放窗口的快速移动,大旋钮旋转幅度越大,缩放窗口 移动越快。水平偏移旋钮用于主时基波形和副时基缩放窗口的缓慢移动。

(4) 波形播放/暂停

当存储深度较大时,记录的波形数据较多,无法完整观察波形信号,这时在缩放模式下, 点击"波形播放/暂停"按键,可使副时基波形自动播放和移动,如下图 6.9 所示。

- ◇ 旋转"大旋钮"可调整波形播放速度,旋转得越快,力度越大,播放速度就越快, 可达到一个最大点。
- ◇ 反向旋转大旋钮可以改变波形播放方向,其中当缩放窗口往左边移动时,波形不断 从左往右穿过窗口,所以副时基中会看到波形往右移动,反之。
- ◇ 点击与副时基同向的导航键,可增大波形播放速度,点击次数越多,波形播放速度 越快;点击与副时基波形播放方向反向的导航键,可以减小播放速度,点击次数越 多,波形播放速度越慢,当速度减为0时,波形将反向播放。
- ◇ 再次点击"波形播放/暂停"按键将**暂停**波形的移动。

图 6.9 波形播放/暂停

6.5.2 搜索与标记

"搜索"功能可快速的找到感兴趣的波形信号,并进行自动标记,方便后期的查看。搜 索功能提供了边沿搜索、脉宽搜索、上升/下降时间、周期、频率、占空比和欠幅搜索类型。 "标记"分为手动标注和自动标注。其可以在采集到的波形中标记感兴趣波形的位置,

可快速定位异常信号。

图 6.10 波形搜索/标记

使用手动标记时,可在感兴趣波形位置点击【Mark /Clear】手动标记,再次【Mark /Clear】 删除标记,点击向左、向右导航按键可从一个标记位置跳到另一个标记的位置。

7. 亮度调节

7.1 概述

波形亮度和网格亮度可根据不同的使用习惯进行调节。用户可调整显示模拟通道的波形 亮度,以说明各种信号特征;通过调节网格亮度,方便波形幅值与周期的目测与参考,所以 增加亮度可提高低概率波形的轨迹亮度,减小亮度可显示复杂信号的更多细节。

波形亮度调整仅影响模拟通道波形(不影响数学运算波形、参考波形、FFT 波形等)。

7.2 设置波形和网格强度

点击如图 7.1 面板上的【Intensity】按钮,进入亮度调节界面图 7.2,默认的波形亮度和网格亮度为 50%。旋转旋钮 A 可调节波形亮度,调节范围为 0%~100%,旋转旋钮 B 可调节网格亮度,调节范围为 0%~100%,步进均为 10%。

再次点击【Intensity】,或短时间内不操作则亮度调节界面将关闭。

图 7.1 亮度调节面板

 İ
 100mV/div
 2
 Closed
 Closed
 Closed
 Closed
 Closed
 I
 Normal
 S00.9%
 Viet
 Normal
 S00.9%
 V
 V
 Normal
 S00.9%
 V
 V
 Normal
 S00.9%
 V
 Normal
 Normal
 S00.9%
 V
 V
 Normal
 S00.9%
 V
 Normal
 S0.9%

亮度可调范围0%~100%

图 7.2 波形亮度调节界面

8. 余辉调节

8.1 概述

余辉功能可以将历史捕获的波形轨迹保持在屏幕上显示,便于观察一闪而过的低概率异常信号。余辉调节的方式如下:

- 通过"一键余辉"功能快速调节。
- 通过进入【**显示设置**】界面进行余辉时间的调节。

8.2 余辉调节方式

模拟示波器的电子打在荧光屏上产生的荧光效果是随着时间渐渐变暗直到消失的,此即 余辉效应。

波形在屏幕上会停留一段时间然后逐渐消失,此即余辉时间。余辉时间直接影响对波形 的观测,例如:当余辉时间过短,用户可能在眨眼时漏过部分信号。要显示多次采集的数据, 可使用余辉。

若设置显示余辉,示波器可用新的采集数据更新显示,但并不立即擦除先前的采集数据。 先前采集数据将以降低的亮度显示,新采集数据则以正常颜色和亮度显示。

(1) 一键余辉

点击面板上的【Persist】一键余辉如下图 8.1 所示,可进入余辉时间调节界面,旋转旋 钮 A 或 B 可对余辉时间进行调节。

余辉选项有 OFF、100ms、200ms、500ms、1s、2s、5s、10s、20s、50s、无限,所选的 余辉时间越长,波形在屏幕上停留的时间就越久。

图 8.1 一键余辉

(2) 【显示设置】下调节余辉时间

点击面板中的【Acquire】按键进入水平时基界面,旋转旋钮 A 选择【显示设置】,进入显示调节界面,点击【余辉时间】,旋转旋钮 A 可以选择所需的余晖时间,余辉时间分为三大类:余辉关闭、有限余辉和无限余辉,如下图 8.2 所示。

图 8.2 余辉设置

- 无限余辉模式。示波器显示新采集波形时,不会清除之前采集的波形。已采集的波形会以亮度较低的颜色显示,新采集的波形则以正常的亮度和颜色显示,使用无限余辉可测量噪声和抖动,捕获偶发事件;
- 有限余辉模式。示波器采集的波形会在屏幕上保留一段时间,此即为余辉时间, 并且可设置,可观察变化比较慢或者出现概率比较低的毛刺。有限余辉模式适用于观察变化较慢或者出现概率较低的毛刺。

图 8.3 无限余辉显示效果

9. 采集信号

9.1 概述

在波形采集之前,需要完成显示控制参数、水平/垂直系统、采样系统的参数设置,相关内容如下所述。

9.2 设置垂直系统

垂直系统的调节可进入菜单面板的"垂直控制区"进行设置与调节。ZDS3000/4000 系 列示波器提供4个模拟输入通道CH1-CH2-CH3-CH4,并且为每个通道提供独立的垂直控制 系统。本节以通道CH1为例介绍垂直系统的设置方法,每个通道的垂直系统设置方法完全 相同。

9.2.1 通道开启

将一个信号通过标配的 ZP1050 探头接入示波器中,在前面板的垂直控制区按下按键 【1】开启通道1。此时,按键【1】亮,屏幕显示通道设置菜单,屏幕左下方的通道1标签 突出显示,并显示和通道设置有关的信息,如图9.1所示。

ZDS3000/4000 系列示波器的通道输入阻抗 1MΩ 或者 50Ω 可调,可用于多种设备的接入测量。这些输入阻抗可在被测设备上使示波器的负载效应最小化,使用户能够进行最精确的测量,适用于许多无源探头。

在此可进行【通道耦合】、【带宽限制】、【探头类型】、【探头比率】、【终端电阻】、【通道标签】、【反相】、【延迟校正】的设置,接下来将进行各项设置解析。

图 9.1 选中通道 1

再按下按键【1】则关闭通道1,按键【1】灯灭并且屏幕左下方的通道标签处显示"Closed"。 注: 垂直档位的调节方式有"粗调"和"微调"两种。 ● **粗调**:按1-2-5步进设置垂直档位,即2mV/div、5mV/div、10mV/div.....10V/div,旋钮B可进 行粗调;

 微调:在较小范围内调整垂直档位,以改善垂直分辨率。如果输入的波形幅度在当前档位略大于 满刻度,而使用下一档位波形显示幅度又稍低,则可使用微调改善波形显示幅度,以利于观察信号细节。

9.2.2 通道耦合设置

用户须设置通道耦合方式滤除不需要的信号,耦合方式有 直流 "DC"、交流 "AC"、接地 "GND" 三种方式:

- "DC": 被测信号的直流分量和交流分量可通过;
- "AC": 被测信号的直流分量被阻隔,可使用更高的 灵敏度显示信号的 AC 分量;
- "GND": 被测信号的直流分量和交流分量被阻隔。

在如

图 9.2 所示通道设置菜单的"通道耦合"菜单里,用户可选择所需的耦合方式(默认为 直流)。当前耦合方式会显示在屏幕下方的"通道耦合显示"标签中,在面板组件中可见。

9.2.3 **带宽限制设置**

大多数示波器中存在限制示波器带宽的电路。限制带宽后, 可减少显示波形噪声,令波形显示更清晰。须注意的是带宽限制 会减少或消除高频信号成分。例如,当被测信号含有高频振荡脉 冲信号时:

- 当关闭带宽限制,被测信号含有的高频分量可通过;
- 将带宽限制打开并限制至 20 MHz, 被测信号的大于所选的带宽限制值的高频分量 将被衰减。带宽限制默认为"关闭"。

9.2.4 探头类型

示波器支持电压探头和电流探头,用户需要事先设置探头的类型,探头类型有电压探头、 电流探头。

9.2.5 探头比率设置

外部被测电压如果超过示波器的最大输入电压,可能会损坏示波器内部电路;而如果配以不同衰减比的探头,就可提供很大的探测灵活性。例如,假设示波器最大输入电压为10V,加一个10倍衰减比的探头后,最大可测量电压就变成了100V。

ZDS3000/4000 系列示波器支持普通无源探头,用户在通道设置菜单可选择探头的衰减 比如图 9.4 所示。大多数无源探头具有衰减比技术指标,例如 10×、100×;按照惯例,衰减 因数在因数后面标注×,例如 10×衰减比。

致远电子

图 9.2 通道耦合设置示例

图 9.3 带宽限制

图 9.4 探头比率设置

当设置探头衰减比后,垂直量程值、垂直偏移电压值、触发电平值、光标测量的值、测量菜单中的测量值也都跟着改变。例如,当探头比率为1×时,屏幕上的垂直档位为5V/div;将探头衰减比打到×10挡,设置示波器探头比率为10×,则屏幕上显示的垂直量程更新为50V/div。

9.2.6 终端电阻

根据输入探头的输入阻抗值选择合适的终端匹配电阻,有1MΩ和50Ω两种选择。一般的普通无源探头输入阻抗使用1MΩ即可,若为电流探头或者传输线探头等有特殊要求的则可使用50Ω。

9.2.7 通道标签

点击通道【1】,选择【通道标签】将弹出一个通道标签命名框如图 9.5,可旋转旋钮 B 选中页面键盘的字母进行通道命名,短按旋钮 B 即可确认选择,点击【确定】即可完成命 名,若需局部删除命名,可使用"退格"键,若需删除所有输入可点击"清空"。通道标签 将在通道名称显示处显示。

图 9.5 通道标签

9.2.8 波形反相

旋转旋钮 A 至下一页或直接点击"下一页"按键即可进入下一页,点击【反相】为"ON" 即可使用反相功能,如图 9.6 所示。

用户可将指定通道的波形电压值反相,即:打开波形反相功能时,波形显示相对地电位翻转 180 度;关闭波形反相时,波形正常显示。波形反相的设置可在通道设置菜单如图 9.6 所示处完成。

使用波形反相功能,在使用基本触发时,示波器会通过更改触发设置来尝试保持相同的 触发点。

图 9.6 波形反相翻页指示

9.2.9 延迟校正

示波器各个通道间的传输延时受测量探头的类型、电缆长度影响可能不同,会影响测量 结果的正确性,因此需要对各通道间的延时进行校正。

使用电流探头和电压探头,不同类型的探头需要延时校准。例如计算功率若不对电压通 道与电流通道进行延迟校正将会出错。

ZDS3000/4000 系列示波器支持用户设定一个延迟时间以校正通道间的时间偏差。用户可在如图 9.7 所示菜单里,使用旋钮 A 和旋钮 B 设置所需的延迟时间(旋钮 A 微调,旋钮 B 粗调),该参数的可设置范围为-100ns 至 100ns。

图 9.7 延迟校正设置菜单

9.3 **设置水平系统**

水平系统的调节可进入前面板的"水平控制区"进行设置与调节。

9.3.1**时基模式**

在前面板上按下【Acquire】键(水平控制菜单键),显示水平控制菜单。在水平控制菜单的【时基模式】菜单项里,用户可选择所需的时基模式。

ZDS3000/4000系列示波器包括三种时基模式:

- Y-T模式。Y-T模式为主要的时基模式。该模式下,Y轴表示电压量,X轴表示时间量;
- ROLL 模式。即滚动模式, 若【自动滚动】式为"ON"状态, 则当水平时基档位大于 等于 50ms/div 时将自动进入滚动模式。
 - 在该模式下,水平时基档位不小于 50ms/div,波形自 右向左缓慢移动显示,屏幕上的固定参考点是屏幕的 右边沿,指的是当前时间;
 - 此状态下波形的水平偏移、触发设置、协议解码、测量范围、设置余辉时间等功能均不可用;

- ▶ 另外,此时的【Single】按键,功能等同于【Run/Stop】 按键;
- 图 9.8 时基模式选择
- ▶ ROLL 模式下水平时基档位最小为 50ms/div, 最大为 1Ks/div;
- ▶ 在 Y-T 模式或者 X-Y 模式下,当水平时基大于 50ms/div 时会自动进入滚动状态。
- ▶ 触发为 AUTO 时才会自动 ROLL,若触发为 Normal 则还是保留在 YT。
- X-Y 模式。ZDS3000/4000 系列示波器为双 X-Y 显示模式,当【XY 模式】为"ON"状态时,将进入 XY 模式, X-Y 模式可将电压-时间显示更改为电压-电压显示。
 - ▶ 开启此模式时,示波器的两两对应通道(CH1和CH2、CH3和CH4)都将自动打 开,X-Y模式显示的图形是把Y-T时基下的两两通道输入波形的每一个点对应到 X-Y时基中的结果。
 - ➢ ZDS3000/4000系列4通道示波器是CH1通道与CH2通道波形对应显示在一个X-Y 模式视图中,CH3通道与CH4通道波形对应显示在另一个X-Y模式视图中。
 - ▶ 以下功能在 X-Y 模式下不起作用:自动测量、光标测量、触发控制(触发使用 Y-T 模式下的设置)。

图 9.9 4 通道示波器 X-Y 模式

52 >> 产品用户手册 |

可以使用 X-Y 模式比较两个信号的频率和相位关系,例如测试信号经过一个电路网络 产生的相位变化。

补充阅读: X-Y 模式

ZDS3000/4000 系列各型号示波器的 X-Y 模式原理均相同,这里以 ZDS4054 Plus 示波器为例说明 X-Y 模式。X-Y 模式下,以 CH1 通道信号电压为 X 值,以 CH2 通道信号电压为 Y 值,从而得到坐标值(X,Y), 在 X-Y 模式中可显示出此点;当 CH1 通道和 CH2 通道信号连续输入时,点也连续显示从而形成各种图形; 用户通过观察图形,可判断 CH1 通道信号和 CH2 通道信号的频率、比例关系,下文对此举例说明。

(1) 输入频率相同,相位不同正弦波时的图形显示

设通道1信号的幅值 X = Asin ω t,通道2信号的幅值 Y = Bsin $(\omega t+\Phi)$,则当 Φ 为不同值时的波形显示如下所述:

- 当Φ=0时,即两个通道的信号相位相同,此时Y=X(A=B),对应的显示波形即为一条45°
 斜线,如图9.10 左图所示。
- 当Φ=π时,即两个通道的信号相位相反,则Y=-X(A=B),对应的显示波形即为一条45°
 斜线,如图 9.10 右图所示;
- 当Φ处于0与π之间时,则X与Y的关系可表示为X2/a2+Y2/b2=c2(其中a、b、c为常数),
 此时对应波形是椭圆,示例如图 9.11 所示;
- 当 Φ=π/2 并且 A=B 时,得到 X 和 Y 的关系为 A2(sinωt)2+A2(cosωt)2= A2,此时波形即为以 A 为
 半径的圆,如图 9.12 所示。

图 9.10 45 斜线

图 9.11 椭圆

图 9.12 圆

(2) 频率和周期计算

当两个通道输入波形的频率比例为整数时,可显示稳定的波形。此时可计算波形的周期,以及通道输 入信号的频率。

计算频率

当两个信号的频率比为整数时,可通过一个已知频率的通道信号,X-Y模式下显示波形和外切水平线、 外切垂直线的切点数来计算另一通道信号的频率。

X-Y 模式下的波形与外切水平线的切点数 NY 为 Y 轴方向最大值或最小值的数目,即 CH2 通道输入信号的最大值或最小值个数;图形与外切垂直线的切点数 NX 为 X 轴方向最大值或最小值的数目,即 CH1 通

道输入信号的最大值或最小值个数。据此,得出 CH1 通道输入信号频率和 CH2 通道输入信号频率的关系 如下所示:

CH1 信号频率: CH2 信号频率= NX : NY

根据上述公式,已知某一通道信号的频率,即可求出另一个通道信号的频率。

计算周期

已知两个通道输入信号的周期(频率也就已知),可计算 X-Y 模式下显示波形的周期。X-Y 模式下波形的周期,是 CH1 通道信号周期和 CH2 通道信号周期的最小公倍数,在该最小公倍数限定的时间内,两个通道都输入了一个完整周期的信号。

9.3.2 自动滚动

【自动滚动】打开为"ON"状态,则当时基档位≥50ms/div时可自动进入滚动模式即 Roll模式,波形自右往左滚动,【自动滚动】关闭为"OFF"状态,则波形不会自动进入滚 动模式。

9.3.3 储存深度

ZDS4054 plus 示波器最大可选 512Mpts,点击【储存深度】旋转旋钮 A 可选中所需的存储深度,短按旋钮 A 即可完成。(可使用触摸方式选择)

存储区域分为固定和自动:

- ▶ 固定存储区域表示存储数据时使用所设置的存储深度;
- ▶ 自动存储区域表示根据当前屏幕的存储时间会自动调整存储深度大小,以最大存储 深度 512Mpts 为上限。

图 9.13 储存深度

9.3.4 双 ZOOM 显示模式

双 ZOOM 显示模式默认状态下为"OFF"状态,在此状态下缩放模式为单 ZOOM 模式,即一个缩放窗口。点击【双 ZOOM】显示模式则状态为"ON",在此状态下为双 ZOOM 缩放窗口显示,如图 9.14 所示。

图 9.14 双 ZOOM 模式界面

9.3.5 设置捕获模式

在前面板上处按下【Acquire】键(水平控制菜单键),显示水平控制菜单。在水平控制 菜单按下【捕获模式】软键,可选择合适的捕获模式。**捕获模式用于控制如何从采样点中获** 取波形点,捕获方式包括:

- 标准
 - ▶ 该模式下,示波器按相等时间间隔对信号采样以重建波形。对于大多数波形来 说,使用该模式可产生最佳的显示效果;
- 平均
 - 该模式下,示波器对多次采样的波形进行平均,以
 减少输入信号上的随机噪声并提高垂直分辨率。

▶ 平均次数越高,噪声越小,但波形显示对波形变化

图 9.15 捕获模式设置

- 的响应也越慢。▶ 平均数的可设置范围是 2~65536 (ROLL 模式不支 持平均模式;
- ▶ 此外 Y-T 和 X-Y 模式下当水平时基档位大于等于 50ms/div 时,也不支持平均 模式);
- 峰值
 - ▶ 该模式下,示波器采集采样间隔信号的最大值和最小值,以获取信号的包络或 可能丢失的窄脉冲。
 - ▶ 使用该模式可避免信号混淆,但显示的噪声较大。
 - ▶ 该模式下,示波器能显示出至少与采样周期一样宽的所有脉冲;
- 高分辨率
 - ▶ 该模式采用一种超取样技术,对采样波形的邻近点平均,减小输入信号上的随机噪声并在屏幕上产生更平滑的波形。
 - ▶ 通常用于数字转换器的采样率高于采集存储器的存速率的情形。

须注意的是,"平均"和"高分辨率"模式使用的平均方式不一样,前者为"波 形平均",后者为"点平均"。

7LC

致远电子

9.3.6 显示设置

显示设置主要设计信号的余辉、色温和冻结显示等的设置,如图 9.16 所示。

图 9.16 显示设置界面

(1) 显示类型设置

用户可设置波形的显示方式为"线"或"点":

- 线:采样点之间通过连线的方式显示。该模式在大多情况下提供最逼真的波形。可 方便查看波形的陡边沿;
- **点:** 直接显示采样点。用户可直观看到每个采样点并可使用光标测量该点的 X 坐 标和 Y 坐标。
- (2) 余辉时间设置

用户可在显示菜单设置余辉时间,如图 9.17 所示。余辉时间可设置为 OFF、100ms、200ms、500ms、1s、2s、5s、10s、20s、50s、无限。

图 9.17 余晖时间设置

注意: 仅对当前显示区域保留波形余辉; 不能平移和缩放余辉显示。

除此之外,余辉显示可点击【Persist】一键余辉,结合旋钮 A 和旋钮 B 进行余晖时间的选择。

(3) 色温设置

在图 9.16 所示显示菜单处,按下"色温"软键,可以**启用**或关闭色温显示模式。当关闭色温显示模式后,示波器进入灰度显示模式,此时用不同亮度的颜色来显示波形,波形出现的概率越大,则波形的颜色越亮,否则越暗。

色温模式下用颜色的变化来体现波形出现频率的大小,波形出现的频率越大,颜色越暖, 出现的频率越小,颜色越冷,图 9.18 为冷色向暖色渐变的图片。

此外,色温显示模式下,波形的颜色更鲜艳,对比度更好,也更容易观察波形轨迹。图 9.19 是某次捕获的波形的灰度显示效果,图 9.20 是色温显示的效果。

图 9.18 冷暖色渐变

图 9.19 灰度显示模式下的波形全局图

图 9.20 色温显示模式下的波形全局图

(4) 冻结显示设置

用户可通过冻结显示模式来设置示波器进入停止状态时的波形显示。如果启用了冻结显示模式,则用户按下【STOP】键时,当前所有波形的显示均保持;但如果未启用冻结显示

模式,用户按下【STOP】键时仅显示最新一次采样的波形。通过冻结模式的设置,用户可以在示波器处于停止状态时,关注到不同的波形细节。

(5) 插值模式

提高波形采样率增加数据的过程为信号的"插值"。插值模式主要提供两种:正弦插值 和线性插值。

- ▶ 正弦插值: 是示波器默认的插值方式。由于基于任意波形都是可以无限次分解成 正弦波的,所以通过正弦内插的方式,能够比较准确和平滑地还原真实波形信号。
- 线性插值:也叫线性内插,这是最简单的插值方式。在 ADC 的相邻采样数据点之间按照线性多项式的计算方式插入一个计算值,插入的这个点为相邻两个采样点连线上的值。通过点与点之间的直接连接形成的波形,细节上能够看到类似于锯齿波的形状,这种插值方式局限于直边缘的信号。

9.4 **设置采样系统**

9.4.1采样系统的停止/启动

可使用"运行控制区"的【Run/Stop】运行/停止和【Single】单次采集键,启动和停止 示波器的采集系统:

- ▶ 当【Run/Stop】运行/停止键是绿色时,表示示波器正在运行,正在采集数据。要 停止采集数据,可按下【Run/Stop】运行/停止。停止后,将显示最后采集的波形;
- ▶ 当【Run/Stop】运行/停止键为红色时,表示数据采集已停止,要开始采集数据, 可按下【Run/Stop】运行/停止;
- ▶ 要捕获并显示单次采集(无论示波器运行还是停止),请按下【Single】,示波器就 会退出自动触发模式而进入常规触发模式,且后续波形数据不会覆盖显示。

9.4.2**采样方式**

ZDS3000/4000 系列示波器支持实时采样方式。该采样方式下,示波器在一次触发中采 样并产生波形显示。

9.4.3**采样率**

采样率是示波器在单位时间内对信号进行采样的次数(Sa/s)。ZDS3000/4000 系列示波器每通道单独最高实时采样率为 4GSa/s,并且会根据当前的捕获模式、存储深度、时基的设置自动切换,自动计算合适的采样率,无需用户手动设置。

10. 波形触发

10.1 概述

数字示波器在工作时,不论仪器是否稳定触发,总是在不断采集波形,但只有稳定的触发才有稳定的显示,触发设置指示示波器何时采集和显示数据。ZDS4054 Plus 示波器提供了 13 种基础触发,30 种协议触发,可使用户关注感兴趣的波形细节。

10.1.1 触发电平

旋转如图 10.1 所示的触发电平偏移旋钮,可修改当前**触发电平**,顺时针转动旋钮,增 大触发电平;逆时针转动旋钮则减小触发电平。短按触发偏移旋钮则可将触发电平线快速设 置到相应触发通道波形 50%的位置。

图 10.1 触发面板功能

如图 10.2 所示,橘红色的线为触发电平线,"T"为触发标志,触发电平线会随触发偏移旋钮的转动而上下移动,并在"T"下方显示当前的触发电平值。触发电平偏移旋钮调节 完毕后,触发电平线约在 2s 后消失。("斜率触发、欠幅触发、超幅触发"除外)

图 10.2 触发电平线

如图 10.3 所示,当触发类型设置为"**斜率触发、欠幅触发、超幅触发**"这三种模式时, 屏幕出现触发电平箭头以及触发标志"T_H"或"T_L",注意当触发标志为"T_H"或"T_L"时, 短按触发偏移旋钮,可在"只调节 T_H"、"只调节 T_L"、"同时调节 T_H和 T_L" 三种调节模式 之间切换。

图 10.3 T_H和 T_L触发标志

10.2 触发控制

点击前面板"触发控制区"【Trigger】键,进入触发设置,在这可以设置【触发方式】、 【触发类型】、【触发源】、【模板触发】、【触发设置】等信息。

图 10.4 触发菜单

10.2.1 触发方式

点击【Trigger】键,进入触发界面后点击菜单右侧相应的软键 选择【触发方式】,可切换"自动"、"普通"的触发方式。如图 10.5 所示。

对 ZDS3000/4000 系列示波器的各触发方式介绍如表 10.1 所示。 图 10.5 触发方式设置

表 10.1 触发方式

触发方式	功能特点	适用范围
普通 (Normal)	在满足触发条件时显示波形,不满 足触发条件时保持原有波形显示, 并等待下一次触发	该触发方式适用于低重复率信号和不要求 自动触发的信号
自动 (Auto)	不论是否满足触发条件都有波形显 示,无信号输入时显示一条水平线	该触发方式适用于低重复率和未知信号电 平,要显示直流信号,必须使用该触发方式

10.2.2 具体使用实例

- 在通道1中接入UART协议,其中探头BNC接口接通道1,探钩接UART协议(TXD), 鳄鱼夹接地,如图 10.6;
- 点击【Default Setup】恢复默认设置,短按"触发控制区"中的"触发电平偏移旋钮" 调节触发电平至触发波形 50%的位置;
- 3、 旋转"垂直控制区"的"垂直量程档位旋钮"即大旋钮,调节垂直档位到合适的位置, 波形占满屏幕 2~6 格左右,调节"垂直偏移旋钮"即小旋钮,让波形在屏幕中间显示;
- 4、 调节"水平控制区"的"水平时基档位旋钮"即大旋钮和"水平偏移旋钮"即小旋钮至 合适的水平时基,让波形尽可能在都能在屏幕上显示;
- 5、 点击"触发控制区"中的【Auto/Normal】系统默认的触发方式为"自动",点击后可切 换为"普通",波形较稳定显示。

图 10.6 UART 协议连接线路

10.2.3 触发类型

ZDS3000/4000 系列示波器拥有丰富的触 发类型供用户使用,ZDS4054 Plus 示波器触 发类型如图 10.7 所示。每种型号示波器具体 触发类型可详见表 25.5。

注: 支持边沿、脉宽、斜率、视频、欠幅、超幅、码 型、第 N 边沿、延迟、超时、建立和保持、A->B、 交替触发、UART、I2C、SPI、CAN、CAN-FD、USB、 LIN、SD_SPI、SD_SD、Wiegand、FlexRay、DS18B20、 PS/2、MDIO、DALI、HDQ、1-Wire、IrDA、Manchester、 Diff-Manche、Miller、1553B、MVB、Modbus、ISO7816、 WTB、SENT、MIPI_DSI、DHT11、SHT11。

10.2.4 强制触发(Force Trig)

强制触发属于触发类型中的一种,当使用 普通触发方式后信号久久无法触发和显示时, 可以使用强制触发将信号触发出来,从而观察 信号的状态。

10.2.5 触发源设置

触发源的设置选择如图 10.8 所示。

	边沿触发		SD_SD
∫↔	脉宽触发		
-4	斜率触发		
~	视频触发		DS18B20
fbr	欠幅触发		PS/2
ndt	超幅触发		MDIO
57	码型触发		DALI
1111 L	第N边沿		HDQ
- -	延迟触发		
€	超时触发		IrDA
	建立保持		
1111 L	A->B(n)		Diff-Manche
1111 L	交替触发		Miller
PLUS	UART		1553B
PLUS	I ² C		M∨B
PLUS	SPI		MODBUS
PLUS	CAN		ISO7816
PLUS	CAN_FD		WTB
PLUS			SENT
PLUS	LIN		DSI
PLUS			DHT11
	-		SHT11

图 10.7 触发类型

62 >> 产品用户手册 |

- 通道1、通道2、通道3和通道4:4个通道的输入信号均可 \triangleright 作为触发信源, 被选中作为触发源的通道可正常工作, 而不 再受通道选择键影响;
- ▶ 市电: 触发信号取自示波器的交流电源输入。这种触发信源 可用于显示信号(如照明设备)与动力电(动力提供设备) 之间的关系,主要应用于电力行业的相关测量;

图 10.8 触发源设置

▶ **EXT (外部触发输入):** 所有通道都在采集数据时,可用外 部触发源作为触发源。外部触发输入阻抗为 1MΩ。这便于 使用无源探头进行通用测量。高阳抗可在被测设备上使示波器的负载效应最小化。

10.2.6 **具体使用实例**

- 1、 通道1接入等脉宽的欠幅信号,其中探头 BNC 接口接通道1,探钩接欠幅信号输出口, 鳄鱼夹接地, 如图 10.9;
- 2、 点击【Default Setup】所有参数恢复默认设置,短按"触发控制区"中的"触发电平旋 钮"调节触发电平至触发波形 50%的位置;
- 3、 旋转"垂直控制区"的"垂直档位旋钮"即大旋钮,调节垂直档位到合适的位置,波形 占满屏幕 2~6 格左右,调节"垂直偏移旋钮"即小旋钮,让波形在屏幕中间;
- 4、 调节"水平控制区"的"水平时基档位旋钥"即大旋钥和"水平偏移旋钥"即小旋钥, 调节合适的水平时基, 让波形尽可能在都能在屏幕上显示: 注: 以上 2~4 步可用【Auto Setup】一键捕获代替,一键捕获可以自动设置参数让波形以最好的效果 显示在屏幕上。
- 5、 点击 "触发控制区"中的【Auto/Normal】系统默认的触发方式为"自动",点击后可 变为"普通",波形可较稳定显示;
- 6、 按下【Trigger】键,进入触发界面,点击菜单右侧相应的软键【触发类型】,旋转旋钮 A 选择【欠幅触发】, 短按旋钮 A 即可确认选择;
- 7、 点击菜单右侧相应软键【信道选择】, 选择"通道1":
- 8、 点击菜单右侧相应软键【脉冲类型】, 旋转旋钮 A 可进行类型选择, 选择第一个"正向 欠幅脉冲触发",短按旋钮 A 即可完成;
- 9、 点击菜单右侧相应软键【限定符】, 旋转旋钮 A 设置为 "NONE", 短按旋钮 A 即可完 成。因为是等脉宽的欠幅信号所以限定脉宽符不需要设置。
- 10、点击菜单右侧相应软键【电平选择】,旋转旋钮 A 设置为第一个"只调节触发电平上限" 短按旋钮 A 即可,此时短按"触发控制区"的旋钮,选中 T_L,将其移动至波形中下部, 再短按旋钮,选中T_H,将其移动至波形的中上部直到欠幅信号被触发即可。

图 10.9 欠幅信号的输入

图 10.10 欠幅触发

注: 欠幅信号的触发也可以使用余辉显示和【模板触碰】完成,有关模板触碰在10.4节中有所讲解。

10.3 复制到搜索

用户将感兴趣的事件通过触发方式将其触发出来,若想了解其出现的频率等信息可将欠 幅触发条件直接同步到搜索条件中,在搜索中无需再设置欠幅搜索。

10.4 模板触发

10.4.1 简介

在使用上述触发参数以外,用户还可设置模板触碰,开启模板触碰功能后,示波器只捕获穿越白色矩形框(模板区域)的信号,其它信号均被过滤。

某些信号出现频率低,无法观察其特征,难以通过标准触发将信号触发出来的情况下, 模板触碰对特殊信号的触发提供了便利。模板触碰功能菜单如图 10.11 所示。

图 10.11 模板触碰功能菜单

10.4.2 使用示例(以下的所有操作均可使用触屏的功能快速完成)

- 1、通道1接入带毛刺的方波信号(即带有异常信号的波形),如图 13.6 所示,点击【Auto Setup】一键捕获波形,让它以最好的效果显示在屏幕上;
- 2、点击【Persist】一键余辉功能,使用无限余辉的方式让闪现的波形留在屏幕上;
- 3、点击【Trigger】进入触发菜单,点击菜单右侧相应软键【模板触发】,设置【模板使能】 为 "ON",如图 10.11 所示,屏幕上出现一个白色矩形框;
- 4、点击菜单右侧相应软键【模板通道】选择"CH1"(使用哪个通道选哪个)。
- 5、点击【位置调节】通过旋钮 A 和 B 调节矩形框的位置到要触发的毛刺的位置如图 10.12, 【大小调节】通过旋钮 A 和 B 调节矩形框的大小,让它刚好框住要触发的毛刺,如图 10.13 所示;
- 注: 旋钮 A 为细调旋钮 B 为粗调, 短按旋钮 B 可对模板的位置进行水平或垂直方向切换。
- 6、用户必须按下"生成模板"软键,令模板触碰设置生效,同时出现一个灰色区域,此即 为模板触碰区域,只有通过该区域并且符合触碰菜单中其它触碰参数设置的波形才能触 发显示,如图 10.14 所示,点击【Clear】一键清除可将余辉清除掉,让触发波形清晰显 示。

图 10.12 模板触碰区域调节

图 10.13 模板大小调节

图 10.14 生成模板

10.5 触发设置

【触发设置】菜单下有【触发释抑】、【灵敏度模式】、【触发耦合】的设置,这些都是比 较细微的触发设置细节,但是对波形的稳定性以及噪声的抑制有很大的作用。

10.5.1 **触发释抑**

释抑时间是指示波器重新启用触发电路所等待的时间,在释抑期间,触发功能暂停。示 波器采用触发释抑功能后,当示波器第一次触发之后,必须经过触发释抑的时间才能够进行 第二次触发。设置触发释抑可稳定触发复杂波形。例如,在重复波形上触发,重复波形之间 具有多个边沿 (或其他事件)。例如,要在图 10.15 所示的重复脉冲触发上获得稳定触发, 可将释抑时间设置为>200 ns 但 <600 ns 的值。注意,设置的触发释抑时间必须大于示波器 图像显示、处理与死区的时间,否则无法稳定触发,触发释抑菜单如图 10.16 所示。

图 10.16 触发释抑设置菜单

具体实例应用:

▶ 将频率为 100KHz,调制频率为 100Hz 的信号输入示波器中,点击【Auto Setup】 一键捕获,可以看到如图 10.17 所示的波形,由于信号中存在多个上升沿,波形在 上升沿的触发下将会识别多个上升沿的位置导致触发位置不统一,波形显示不稳定。

图 10.17 波形不稳定显示

 用户可按下前面板的【Trigger】键(触发功能键),在弹出的触发功能菜单里点击 【触发设置】进入触发设置界面。点击【触发释抑】用户可旋转旋钮 A 和旋钮 B 调节触发释抑时间的大小,最大为 16s,其中旋钮 A 微调,旋钮 B 粗调,如图 10.18 所示。

图 10.18 触发释抑界面

旋转旋钮 A 或 B 对触发释抑时间进行调节直至波形可稳定触发即可,如图 10.19 所示,根据信号特征调制频率为 100Hz,周期为 10ms,将触发释抑时间可以大致 调为 10ms 左右即可稳定触发。

图 10.19 波形稳定显示

10.5.2 **触发灵敏度设置**

触发灵敏度指示波器对触发信号识别的敏感度,通过调整触发灵敏度,能有效滤除可能 叠加在触发信号上的噪声,防止误触发;但对于触发灵敏度而言,并不是越高越好;有时灵 敏度太高会造成误触发,灵敏度不够又会导致不触发,因此灵敏度的可调性很重要。用户可 选择自动触发灵敏度模式或自定义触发灵敏度的方式来设置示波器的触发灵敏度。

(1) 触发灵敏度界面:

- ▶ 在前面板按下【Trigger】键,在弹出的触发功能菜单里选择【触发设置】中配置触发【灵敏度模式】;
- 【灵敏度模式】分为"自动"和"手动",如果是"手动"触发灵敏度则需要配置 触发灵敏度大小,具体有 0~1.5div,步进为 0.1div,不同幅度的波形需要设置不一样的灵敏度,幅度越小要设置的灵敏度值就越小,相关菜单如图 10.20 所示。用户 可配置触发灵敏度的大小为相对每格电压的比例,例如 0.3div 即 1 格电压的 30%。

图 10.20 触发灵敏度设置

(2) 具体实例应用

本次实例主要是检测 12V 电源掉电重启瞬间的变化情况,变化大概在 0.1~1V 左右,在 使用 2V/div 的垂直档位下实时检测,发现无法捕获掉电瞬间波形,什么原因呢?

原因在于触发灵敏度不合适,具体解决方案如下:

- ▶ 首先将 12V 直流电源接入示波器中,点击【Auto Setup】一键捕获,垂直档位设置 为 2V/div,可发现捕获到一条直流信号线,无跳变;
- ▶ 此时可点击【Trigger】进入触发界面,选择【触发设置】点击【触发灵敏度】设置 为"手动",触发灵敏度默认为 0.3div,而掉电瞬间变化很微小,在 2V/div 的垂直 档位下跳变 0.1~1V 左右,所以触发灵敏度在 0.3div 无法捕获时,可适当调小触发 灵敏度的值,旋转旋钮 A 将灵敏度调为最小 0.1div 进行捕获。
- ▶ 最后给电源进行掉电重启操作,在单次捕获【Single】的条件下,可看到掉电瞬间 波形完美捕获,如图 10.21 所示。

图 10.21 掉电波形稳定捕获

10.5.3 触发耦合

触发耦合决定输入触发电路的输入信号分量,有以下四种类型:

- **直流**:允许直、交流成分通过触发路径;
- 交流:阻挡直流成分并衰减 8 Hz 以下的信号;
- 低频抑制:阻挡直流成分并抑制 50 KHz 以下的低频成分;
- 高频抑制:抑制 50KHz 以上的高频成分。

具体步骤:按下【Trigger】键(触发功能键),在弹出的触发功能菜单里选择【触发设置】 中配置【触发耦合】类型,如图 10.22 所示。

图 10.22 触发耦合设置

10.6 与触发类型相关的触发设置

按下【Trigger】键(触发功能键),在弹出的触发功能菜单里选择【触发类型】中可以选择类型,并出现相应类型需要设置的信息,如图 10.7。接下来将对部分协议进行分析。

10.6.1 边沿触发设置

选择"边沿触发"类型后须在如图 10.23 所示菜单设置触发【边沿类型】。

图 10.23 触发边沿类型

边沿触发参数的设置范围如表 10.2 所示。

表 10.2 边沿触发参数设置范围

参数	设置范围				
触发源	通道1、通道2、通道3、通道4、市电、外触发				
边沿类型	上升沿、下降沿、双边沿				

10.6.2 脉宽触发设置

【信源选择】有"通道1"、"通道2"、"通道3"和"通道4"四种选择,使用哪个通道选哪个。

选择"脉宽触发"类型后,须配置"脉宽类型"和"脉冲宽度",如图 10.24 所示。

当正脉冲宽度大于脉宽下限时触发 当正脉冲宽度小于脉宽上限时触发 当正脉冲宽度在指定范围时触发		✓ 脉宽类型 「← ➤ → 】
当负脉冲宽度大于脉宽下限时触发 当负脉冲宽度小于脉宽上限时触发 当负脉冲宽度小于脉宽上限时触发 当负脉冲宽度在指定范围时触发	بری بالد بالد بالد	脉宽下限 10.0ns

脉宽触发参数的设置范围如表 10.3 脉宽触发参数设置范围所示。

表 10.3 脉宽触发参数设置范围

脉宽类型	参数	设置范围	
当正脉冲宽度大于脉宽下限时触发	脉宽下限	1ns≤脉宽下限≤1s	
当正脉冲宽度小于脉宽上限时触发	脉宽上限	1ns≤脉宽上限≤1s	
当正脉冲宽度在指定范围时触发	脉宽下限、脉宽上限	1ns≤脉宽下限<脉宽上限 1s	
当负脉冲宽度大于脉宽下限时触发	脉宽下限	1ns≤脉宽下限≤1s	
当负脉冲宽度小于脉宽上限时触发	脉宽上限	1ns≤脉宽上限≤1s	
当负脉冲在指定范围时触发	脉宽下限、脉宽上限	lns≤脉宽上限<脉宽上限≤1s	

10.6.3 斜率触发设置

斜率触发是指在指定时间的正斜率或负斜率触发。配置斜率触发时,用户须设置斜率条件、斜率时间。

(1) 触发模式

72 >> 产品用户手册 |

(2) 设置时间上限、下限

根据设置的触发模式,须设置时间上限、下限,如图 10.27 所示。旋钮 A 微调,旋 钮 B 粗调。

图 10.27 设置时间上限下限

(3) 电平选择

如图 10.28 所示,触发电平上限和触发电平下限决定了正斜率时间和负斜率时间。 用户可调节触发电平上限和触发电平下限,调节方式可为"只调节触发电平上限"、"只 调节触发电平下限"、"同时调节触发电平上限和下限",相关的菜单操作分别如图 10.29、 图 10.30、图 10.31 所示。除了在菜单里选择之外,用户也可短按触发偏移旋钮来选择 触发电平上限和下限的调节方式。

产品用户手册 << 73

致远电子

图 10.28 仅调节触发电平上限

此时可通过触发偏移旋钮调节触发电平下限TL的位置

仅调节触发电平下限

图 10.29 仅调节触发电平下限

调节触发电平上限、下限

图 10.30 调节触发电平上限、下限

(4) 斜率触发参数设置范围

表 10.4 斜率触发参数设置范围

触发模式	参数	设置范围		
_	触发源	通道1、通道2、通道3、通道4		
	由亚进场	只调节触发电平上限、只调节触发电平下限		
_	电干远拜	同时调节触发电平上下限		
当正斜率大于时间下限时触发	时间下限	8ns≤时间下限≤1s		
当正斜率小于时间上限时触发	时间上限	8ns≤时间上限≤1s		
当正斜率在指定范围时触发	时间下限、时间上限	8ns≤时间下限<时间上限≤1s		
当负斜率大于时间下限时触发	时间下限	8ns≤时间下限≤1s		
当负斜率小于时间上限时触发	时间上限	8ns≤时间上限≤1s		
当负斜率在指定范围时触发	时间下限、时间上限	8ns≤时间下限<时间上限≤1s		

10.6.4 欠幅触发

74 >> 产品用户手册 |

(1) 欠幅触发脉冲类型设置

用户首先需要选择欠幅触发脉冲的类型,详见图 10.31。

图 10.31 欠幅触发的脉冲类型

(2) 限定符设置

然后,用户须指定欠幅触发信号的电平范围是否作为触发条件,具体见图 10.32。

图 10.32 欠幅脉冲宽度限定

(3) 电平选择

用户可设置欠幅触发电平的范围,这可通过调节上限幅度电平和下限幅度电平来实现; 调节方式可选只调节上限幅度电平、只调节下限幅度电平、同时调节上限和下限幅度电平, 相关菜单见图 10.33:

- 当选择"只调节上限幅度电平",旋转触发偏移旋钮时仅上限幅度电平(TH)垂直移动;
- 当选择"只调节下限幅度电平",旋转触发偏移旋钮时仅下限幅度电平(TL)垂直移动;
- 当选择"同时调节上、下限幅度电平"则上下限幅度电平(TH 和 TL)同时移动。

图 10.33 上限幅度电平、下限幅度电平的调节方式

致远电子

图 10.34 欠幅原理解析

(4) 欠幅触发参数设置范围

参数的设置范围见表 10.5。

触发模式	参数	设置范围		
	触发源	通道1、通道2、通道3、通道4		
	脉冲类型	正极性、负极性、双极性		
中亚光报 只调节触发电平上限、只调节触发		只调节触发电平上限、只调节触发电平下限		
	电干远拜	同时调节触发电平上下限		
	限定符	NONE, >, <, <>		
欠幅脉冲宽度小于脉宽上限时触发	脉宽上限	8ns≤ 脉宽上限 ≤1s		
欠幅脉冲宽度大于脉宽下限时触发	脉宽下限	8ns≤ 脉宽下限 ≤1s		
欠幅脉冲宽度在指定范围内时触发	脉宽上限、脉宽下限	8ns≤ 脉宽下限 < 脉宽上限 ≤1s		

表 10.5 欠幅触发参数设置范围

10.6.5 超幅触发

(1) 超幅触发脉冲类型设置

用户首先需要选择超幅触发脉冲的类型,详见图 10.35。

图 10.35 超幅触发的脉冲类型

(2) 限定符

用户须指定超幅触发信号的电平范围是否作为触发条件,具体见图 10.36。

图 10.36 超幅触发的限定符

(3) 电平选择

用户可设置超幅触发信号的电平范围,这可通过调节上限幅度电平和下限幅度电平来实现;调节方式可选只调节上限幅度电平、只调节下限幅度电平、同时调节上限和下限幅度电平,相关菜单见图 10.37:

- 当选择"只调节上限幅度电平",旋转触发偏移旋钮时仅上限幅度电平垂直移动;
- 当选择"只调节下限幅度电平",旋转触发偏移旋钮时仅下限幅度电平垂直移动;
- 当选择"同时调节上、下限幅度电平"则上下限幅度电平同时移动。

图 10.37 触发电平上限、触发电平下限的调节方式

(4) 超幅触发参数的设置范围

超幅触发参数的设置范围如表 10.6 所示。

表 10.6 超幅触发参数设置范围

触发模式	参数	设置范围		
—	触发源	通道1、通道2、通道3、通道4		
_	脉冲类型	正极性、负极性、双极性		
	由亚选择	只调节触发电平上限、只调节触发电平下限		
	电干远评	同时调节触发电平上下限		
	限定符	NONE, >, <, <>		
超幅脉冲宽度小于	脉穿上阴	Pro / 脉密上阳 /10		
脉宽上限时触发	加见上限	olis 三加克工版 SIS		
超幅脉冲宽度大于	脉旁下阳	8ns≤ 脉宽下限 ≤1s		
脉宽下限时触发	加加克干掉			
超幅脉冲宽度在指	脉塞上阻 脉塞下阻	8ns≤ 脉宽下限 < 脉宽上限 ≤1s		
定范围内时触发	加见工版、加见于限			

10.6.6 第 N 边沿触发

在数据传输过程中,一般会有一段持续较长时间的空闲信号。第N边沿是在指定空闲时间后第N个边沿上进行触发。第N边沿触发的参数设置说明详见图10.38,参数设置范围见表10.7。

图 10.38 第 N 边沿触发

表 10.7 第 N 边沿触发参数范围

参数	设置范围		
触发源	通道1、通道2、通道3和通道4		
边沿类型	上升沿、下降沿		
边沿数	1~65535		
空闲时间	10ns~1s		

10.6.7 延迟触发

当信源 A 的指定边沿与信源 B 的指定边沿的时间差满足设置时产生延迟触发,可以对触发源、触发模式、限定符、时间上限与时间下限相关参数进行设置。

(1) 触发模式

延迟触发有多种模式,需要用户设置,详见图 10.39。

(2) 限定符

用户可限定边沿时间差在满足何值时方可产生延时触发,相关菜单见图 10.40。

(3) 触发参数设置范围

延迟触发参数的设置范围见下表 10.8。

表 10.8 延迟触发参数设置范围

参数	设置范围		
触发源	通道1、通道2、通道3和通道4		
舳尖鴣弐	信源 A 上升沿到信源 B 上升沿、信源 A 上升沿到信源 B 下降沿		
肥及뙩八	信源 A 下降沿到信源 B 上升沿、信源 A 下降沿到信源 B 下降沿		
限定符	>, <, <>		
	当限定符选择为 ">",1ns≤ 时间下限 ≤1s		
时间上限和下限	当限定符选择为 "<",1ns≤ 时间上限 ≤1s		
	当限定符选择为 "<>",1ns≤ 时间下限 < 时间上限 ≤1s		

10.6.8 超时触发

从输入信号的设定边沿开始计时,当指定电平的持续时间大于设置的超时时间时产生超时触发。

(1) 触发模式

超时触发有多种模式,需要用户设置,详见图 10.41。

图 10.41 设置触发模式

(2) 超时时间

用户可使用旋钮 A 和旋钮 B 设置超时时间,详见图 10.42。其中旋钮 A 微调超时时间, 旋钮 B 粗调超时时间。

图 10.42 超时时间调节

(3) 超时触发参数设置范围

超时触发参数的设置范围见表 10.9。

表 10.9 超时触发参数的设置范围

参数	设置范围
触发源	通道1、通道2、通道3和通道4
触发模式	可设置3种触发模式,详见图10.41
超时时间	8ns ≤ 超时时间 ≤1s

10.6.9 建立/保持触发

在采样时钟信号到来之前,数据必须保持稳定一段时间,此即为建立时间;如果建立时间不够长,则数据将无法稳定传输。在采样时钟信号到来之后,数据也必须保持稳定一段时间,此即为保持时间;如果保持时间不够长,则数据同样无法稳定传输。

为了判断数据传输的建立和保持时间是否符合设计要求,用户可使用建立/保持触发来检测信号的时序。

(1) 触发类型

用户可选择建立触发或保持触发,如图 10.43 所示。

图 10.43 触发类型

(2) 建立时间和保持时间

当选择触发类型后,相应地需要设置建立时间或保持时间,详见图 10.44。

图 10.44 建立时间/保持时间调节

(3) 时钟通道、数据通道

用户需要指定输出时钟信号和数据的通道。

图 10.45 时钟通道、数据通道设置

(4) 采样类型

用户需要选择是在何种时钟边沿对数据进行采样,相关菜单操作见图 10.46。

图 10.46 采样类型设置

(5) 数据类型

用户需要设定被认为是有效数据的电平类型,详见图 10.47。

图 10.47 数据类型

(6) 触发参数设置范围

建立/保持触发的参数设置范围见表 10.10。

表 10.10 建立/保持触发的参数设置范围

参数	设置范围
时钟、数据通道	通道1、通道2、通道3和通道4
采样类型	上升沿、下降沿
数据类型	高电平、低电平
建立时间	2ns ≤ 建立时间 ≤1s
保持时间	2ns ≤ 保持时间 ≤1s

10.6.10 码型触发

↑ 产品用户手册 << 81
</p>

码型是触发信号的类型。码型触发里,各通道都出现指定类型触发信号时,才产生触发。 用户可在触发功能菜单里选择码型触发并 配置参数。

(1) 设置码型

最多可设置 CH1 通道、CH2 通道、 CH3 通道和 CH4 通道的码型,可选择高电 平、低电平、忽略、上升沿、下降沿,详 见图 8.45。

将所选通道的信号类型设置为"忽略", 则该通道不参与码型触发。当所有通道的 触发信号类型均选择忽略时,则不产生触 发。

此外,只能选择一个通道的码型为边沿。例如,当某个通道 N 的码型已选择为上升沿 或下降沿,此时再选择其它通道码型为上升沿或下降沿将导致通道 N 的码型强制变为忽略。

(2) 限定符

限定符仅在通道码型为电平时生效,用于设置通道触发电平的时间长度,详见图 10.49 限定符设置说明。

图 10.49 限定符设置说明

(3) 时间上下限

设置与限定符对应的时间上下限,例如当设置限定符为 ">"时,须设置时间下限,当 设置限定符为 "<"时,须设置时间上限,如图 10.50 时间上下限所示。

图 10.50 时间上下限

(4) 参数设置范围

码型触发的参数设置范围见表 10.11。

表 10.11 码型触发的参数设置范围

82 >> 产品用户手册 |

参数	设置范围	
通道码型	高电平、低电平、忽略、上升沿、下降沿	
限定符	NONE、>、<、<>、><	
	当限定符为"<"时, 16ns≤时间上限≤1s	
时间上限	当限定符为 "<>" 和 "><" 时,	
	8ns≤ 时间下限 ≤ 时间上限 ≤1s	
	当限定符为">"时, 8ns≤ 时间下限≤1s	
时间下限	当限定符为 "<>" 和 "><" 时,	
	8ns ≤ 时间下限 ≤ 时间上限 <1s	

10.6.11 视频触发

用户可在触发功能菜单里选择视频触发类型,并配置视频触发参数:视频格式、视频极 性、触发模式,如图 8.48 所示。

(1) 视频格式选择

选择触发源的视频格式:

- NTSC: 帧率为 30fps,每秒传输 60 个场。一个帧分为两 个场,偶场在前,奇场在后,共有 525 条电视扫描线, 隔行扫描;
- PAL: 帧率为 25fps,有 625 条扫描线。奇场在前,偶场 在后,隔行扫描;
- SECAM: 帧率为 25fps。有 625 条扫描线,隔行扫描。

(2) 视频极性

用户可在视频触发菜单的极性菜单里配置所需视频极性 为正极性**——**或者负极性**——**。

(3) 触发模式

用户可指定触发模式,如图 8.49 所示:

- 任意行:在所有水平同步脉冲上都可以触发;
- 指定行:在指定行的同步脉冲上触发;
- 任意场:在垂直同步间隔中第一个脉冲的上升沿触发;
- 偶数场:在偶数场的第一个锯齿波脉冲上升沿处触发;
- 奇数场:在奇数场的第一个锯齿波脉冲上升沿处触发。

10.6.12 A->B 触发

用户可在触发功能菜单里选择 A->B 触发触发类型,并配置 A->B 触发参数,其表示 A 波形边沿过后,B 波形开始边沿计数,当计数到达 n 则触发。此触发用于两通道波形的稳定触发和显示,如图 10.53 所示。

745 致远电子

图 10.51 视频触发

图 10.52 视频触发模式

图 10.53 A->B 触发效果图

(1) 通道源选择

如图 10.54 所示可知, A 信源和 B 信源可选择 CH1、CH2、CH3 和 CH4。

	触发
	 ・ ・ ・
通道1 通道2	✓ A信源 通道1
通道3 通道4	 B信源 通道2

图 10.54 通道源选择

(2) 边沿选择

A 边沿与 B 边沿的边沿类型可选择上升沿或下降沿,如下图 10.55 所示。

图 10.55 边沿选择

(3) 边沿数调节

点击【边沿数】可通过旋转旋钮 A 或旋钮 B 设置所需的边沿数,其中旋钮 A 为 微调,旋钮 B 为粗调,如图 10.56 所示。

图 10.56 边沿数调节

10.6.13 交替触发

交替触发可通过随机函数选择是上升沿还是下降沿触发,即第一次触发为上升沿触发,则第二次为下降沿触发,以此类推循环。

10.6.14 **触发协议参数设置**

其它高级通信协议例如 SPI、I²C、UART 等,需要设置触发的协议参数,其中 UART、 SPI 触发协议参数的设置如图 10.57 图 10.58 所示。需要注意的是,SPI 触发支持的最大 SPI 时钟频率为 16MHz,超过该频率可能导致无法稳定触发。

图 10.57 UART 触发协议参数

A. i	通过旋钮A进行选	择操作,按下进	主 入相应设置。				触发方式 自动
触发 设置	时钟信源 通道1	数据信源 通道2	采样模式 上升沿	数据位宽 8	数据模式 MSB		触发类型 SPI
	触发数据 0x5A	超时值 8.00us				◀ €通〔	协议参数 面1 数据信源

图 10.58 SPI 触发协议参数

11. 光标测量

11.1 概述

本章介绍光标测量功能及其使用方法。用户可使用光标测量功能测量所选波形的 X 轴 值(如时间)和 Y 轴值(如电压)。光标测量功能里,有两对测量光标,包括 X 型光标或 Y 型光标。X 型光标通常用于测量时间参数,Y 型光标通常用于测量电压参数,如图 11.1 所 示。

图 11.1 X 型光标和 Y 型光标

11.2 一键光标的使用

本次案例使用一键光标测量波形的周期和峰峰值。

- 在通道1接入信号,点击【Auto Setup】一键捕获波形,此时按下前面板的【Cursor】 一键光标,如图11.2所示,可进入光标测量界面中。
- 在界面中有两条垂直实线为 X 光标,分别标明 A、B,旋转 A 旋钮可对 A 光标进 行移动,旋转 B 旋钮可以移动 B 光标,短按旋钮 A 或 B 可开启光标联动功能,移 动 X 光标可测出波形的周期。
- 点击【Select】可出现两条水平虚线 Y 光标。
- 点击【Select】可切换光标类型,切换对象为 X 型光标、Y 型光标和 XY 光标,实 线光标为可移动光标,短按 A 或 B 旋钮启动联动光标,可同时移动两条光标,再 次短按 A 或 B 旋钮可关闭联动光标,此时移动 Y 型光标可测出信号峰峰值。
- 当切换到 XY 光标类型, X 光标为实线可调时, 短按 A 或 B 旋钮可开启光标联动, 再次短按 A 或 B 旋钮可切换到 Y 光标为实线可调。(当切换到 XY 光标类型, Y 光标为 实线可调时, 短按A 或B 旋钮可开启光标联动, 再次短按A 或B 旋钮可切换到 X 光标为实线可调。)
- 在 X 型光标或 Y 型光标, 被选中的光标类型呈实线且标明 A 和 B, 具体如图 11.3 所示。

图 11.2 光标测量菜单

图 11.3 光标测量结果

12. "真正意义"参数测量统计

12.1 概述

ZDS3000/4000 系列示波器提供参数自动测量和对测量结果的统计分析功能。按下前面 板的【Measure】键,显示测量菜单如图 12.1,选择测量项目后自动测量界面如图 12.2 所示。

图 12.1 自动测量菜单

图 12.2 自动测量界面

表 12.1 测量项目解析

名称	说明
火带住	当前数据帧的第一个样本值(比如一帧数据有多个周
二月11日	期,指这帧数据的第一个周期的样本值)
最大值	所有参与统计的样本中的数值最大的样本值
最小值	所有参与统计的样本中的数值最小的样本值

续	上表
- 35-	上衣

名称	说明
算术平均值	所有参与统计的样本的算术平均值
标准方差	所有参与统计的样本的标准方差值
样本数	所有统计的样本数,每次将会成倍增加

12.2 何谓真正意义的参数测量统计?

以图 12.3 所示为例,虽然屏幕上捕获了 10 个正脉冲,但是传统示波器只能测量屏幕中 央(或最左边)一个周期的波形而忽略另外 9 个正脉冲,屏幕上的异常脉冲没有检测到。这 种测量统计我们称之为"伪测量统计",因为它提供的测量统计信息不能全面反映被捕获数 据的信息。如果工程师不了解这种测量统计算法的实质,并误认为系统正处于最佳工作状态, 将得出错误的结论。

如图 12.4 所示"真正意义"的参数测量统计会把屏幕上捕获的所有波形进行测量统计, 得出当前值、最大值、最小值和平均值、标准差、测量次数。用户通过观察统计的最大值和 最小值可快速了解波形中可能存在的异常,通过观察平均值、标准差可快速评估信号特性。

12.3 测量统计

【测量统计】打开,则所有测量项测量显示时,将显示当前值,最大值,最小值和平均 值,标准值、测量次数等信息。【测量统计】关闭,则只显示所测对象的当前值。

12.4 测量项设置

在如图 12.2 所示测量菜单里按下"测量项设置"软键,打开测量项设置菜单,如图 12.5 所示。用户可一键批量选择不同的测量项配置如【电压测量】、【时间测量】,也可使用旋钮 B 自行选择测量项,旋转旋钮 B 可选中所需的测量项,短按旋钮 B 可确认选择,被选中的

项呈黄色字体。

旋转旋钮B选中测量项, 短按旋钮B可确认完成。

峰峰值 正过中 直流有效值-周期 校准平均值	8 幅度 负过中 直流有效值-全屏	最大值 正预中 交流有效值-周期	最小值 负预冲 交流有效值-全屏	顶部値 平均値-周期 比率-周期 ▼	底部值 平均值-全屏 比率-全屏 ▼	测量项选择 ④ 通道源 通道1	选择需执行自 动测量的通道
周期正占空比	频率 负占空比	上升时间 突发宽度	下降时间 脉冲串长度	正脉冲宽度 X @min	负脉冲宽度 X @max	电压测量	选择电压相 关的测量项
延迟 ƒ → ƒ ▼ 建立时间	延迟 t → t ▼ 保持时间	延迟 f → t ▼ 建立保持比率	延迟 t → f ▼ 波特率	相位 Ӻ → Ӻ ▼ CAN总线负载率	相位 t → t ▼	时间测量	选择时间相 关的测量项
上升沿计数 面积-周期	下降沿计数 面积-全屏	正脉冲计数 正面积-周期	负脉冲计数 负面积-周期	触发计数器 正面积-全屏	负面积-全屏	4 拷贝到	可将所选的测量项 目拷贝到其他通道 或者数学运算
波形的峰峰值	峰峰值 是指最大值与最小值	这间的差值。	最大值 顶部值	\sim		清除测量	清除所选的测量项
	测量项目释义的	解析	峰峰 底部值 ——	值幅值	\sim	• 返回	点击返回测量菜单

图 12.5 测量项设置

完成测量项的选择后,按下图 12.5 中的【返回】软键,屏幕上将显示测量结果列表,图 12.6 所示。

图 12.6 测量结果列表

12.4.1 清除测量项

用户在如图 12.5 所示测量菜单按下【全部清除】软键,则清除当前选中通道的所有测量项。或者通过旋转旋钮 B 至所要清除的选项,短按旋钮 B,即可清除当前选项的测量值。

12.4.2 测量项说明

示波器的各测量项符号和对应测量项说明如表 12.2 所示。

测量项	测量项符号					
电压扫	电压参数					
峰峰值	Pk-Pk					
幅度	Ampl					
最大值	Max					
最小值	Min					
顶部值	Тор					
底部值	Base					
正过冲	Over+					
负过冲	Over-					
正预冲	Pre+					
负预冲	Pre-					
平均值-周期	Avg-N					
平均值-全屏	Avg-S					
直流有效值-周期	DCRMS-N					
直流有效值-全屏	DCRMS-S					
交流有效值-周期	ACRMS-N					
交流有效值-全屏	ACRMS-S					
比率-周期	Ratio-N					
比率-全屏	Ratio-S					
校准平均值	V-Mean					
时间	参数					
周期	Period					
频率	Freq					
上升时间	RiseTime					
下降时间	FallTime					
正脉冲宽度	+PulseWD					
负脉冲宽度	-PulseWD					
正占空比	+Duty					
突发宽度	BurstWD					
负占空比	—Duty					
脉冲串长度	PulseTrain					
X@min	X@min					
X@max	X@max					
延迟 1√-2√	Delay↑↑					
延迟 11-21	Delay↓↓					
延迟 12 1	Delay↑↓					
延迟1-2	Delay↓↑					
相位 1-5-2-5	Phase↑↑					
相位 11-21	Phase↓↓					

表 12.2 测量项和测量项符号

铁工仪
测量项符号
HoldT
SetupT
SHRatio
Baud
CAN-useR
RiseCount
FallCount
+PulseCnt
-PulseCnt
TriggerCnt
他
Area-N
Area-S
PArea-N
NArea-N
PArea-S
NArea-S

续上表

注:测量项符号后的"(C1)" 等标识指示通道编号,"C1"为通道1,"C2"为通道2,依此类推。

表 12.3 测量项说明

续上表

证触发的稳定性。 12.4.3 具体应用实例

- 1、通道1接入峰峰值为3V左右,频率为1MHz带毛刺的方波信号,点击【Auto Setup】一 键捕获波形,如图 12.7 所示;
- 2、点击【Acquire】进入时基界面,选择【储存深度】中的【固定深度】,在【固定深度】 选项中选择 512Mpts,同时时基调为 5ms/div 存储更多的数据,测量更多的数据。
- 3、点击前面板的【Measure】键进入测量界面,点击【测量统计】选择为"ON";
- 4、点击【测量项选择】进入测量项选择界面如图 12.8 所示 ,界面【通道选择】选择"CH1", 而【电压测量】、【时间测量】为批量选择测量项,我们可以选择其中一个如【电压测量】 或【时间测量】后,点击【返回】进入显示界面,如图 12.9 所示,整个界面可显示常 用的 24 个测量项:

从图中我们可以分析出信号的异常以及信号的特性。

▲ 致远电子

- 5、点击【测量项选择】进入测量项选择界面,点击【全部清除】可清空刚才所选的测量项;
- 6、旋转旋钮 B 至"峰峰值",如图 12.10,短按旋钮 B 即可选择"峰峰值"测量,点击【返回】屏幕即显示测量结果,如图 12.11(可以选择任何一项你想测的参数,若不懂参数的含义可以选中参数后长按旋钮 B 即可弹出解析)。

图 12.7 接入方波信号

		~		_			
	峰峰值	幅度	最大值	最小值	顶部值	底部值	测量项选择
T→	正过冲 直流有效值-周期 校准平均值	负过冲 直流有效值-全屏	正预冲 交流有效值-周期	负预冲 交流有效值-全屏	平均值-周期 比率-周期 ▼	平均值-全屏 比率-全屏 ▼	▲ 通道源 通道1
1₽	周期 正占空比	频率 负占空比	上升时间 突发宽度	<mark>下降时间</mark> 脉冲串长度	<mark>正脉</mark> 冲宽度 X@min	负 <mark>脉冲宽度</mark> X@max	电压测量
	延迟 ƒ → ƒ ▼ 建立时间	延迟 t → t ▼ 保持时间	延迟 f → t ▼ 建立保 持 比率	延迟 t → ƒ ▼ 波特率	相位 ਯ → J ▼ CAN总线负载率	相位 ᡫ→ᡫ ▼	时间测量
	上升沿计数 面积-周期	下降沿计数 面积-全屏	正脉冲计数 正面积-周期	负脉冲计数 负面积-周期	触发计数器 正面积-全屏	负面积-全屏	∢ 拷贝到
	波形的峰峰值易	峰峰值 是指最大值与最小值	之间的差值。	最大值 顶部值	\sim		清除测量
				峰峰 底部值 最小值	值 / 幅值 \ ↓	\searrow	 返回
z / s®	1 100mV/div 2 	Closed 3	Closed 4	Closed 		Run 1 🖬 Auto T 160mV	100 us/ Y-T 0.00s 1.40ms 1.40Mpts Norm 1.00GHz

图 12.8 测量项选择界面

1							+PulseWD(0 470.0ns	1)		+ T
							1.412us 150.0ns 470.4ns	异常脉	冲信号被测出	3
ſ		Period(C1)	Frea(C1)	RiseTime(C1)	FallTime(C1)	+PulseWD(C1)	-PulseWD(C1)	+Dutv(C1)	-Duty(C1)	
	Max	1.882us	1.080MHz	144.0ns	36.00ns	1.412us	790.0ns	75.11%	84.04%	
	Min	926.0ns	531.3kHz	24.00ns	24.00ns	150.0ns	468.0ns	15.96%	24.89%	
	Avg	940.0ns	1.064MHz	28.31ns	28.83ns	470.3ns	469.7ns	50.04%	49.96%	
	Stdev	4.203ns	2.401kHz	1.286ns	1.322ns	4.465ns	1.546ns	0.00%	0.00%	
	Count	3.574M	3.574M	3.574M	3.574M	3.574M	3.574M	3.574M	3.574M	
Ĩ		Pk-Pk(C1)	Ampl(C1)	Max(C1)	Min(C1)	Top(C1)	Base(C1)	Ava-S(C1)	ACRMS-N(C1)	
	Max	340.0mV	328.0mV	336.0mV	-4.000mV	328.0mV	0.000mV	164.7mV	160.9mV	
	Min	336.0mV	328.0mV	332.0mV	-4.000mV	328.0mV	0.000mV	164.2mV	160.5mV	
	Avg	337.7mV	328.0mV	333.7mV	-4.000mV	328.0mV	0.000mV	164.5mV	160.7mV	
	Stdev	1.972mV	0.000mV	1.972mV	0.000mV	0.000mV	0.000mV	120.9uV	110.6uV	
		12	12	12	12	12	12	12	12	

图 12.9 电压+时间综合测量

Γ	峰峰值	幅度	最大值	最小值	顶部值	底部值	测量项选择
:	正过冲 直流有效值-周期 校准平均值	负过冲 直流有效值-全屏	正预冲 交流有效值-周期	负预冲 交流有效值-全屏	平均值-周期 比率-周期 ▼	平均值-全屏 比率-全屏 ▼	✓ 通道源 通道1
•	周期 正占空比	频率 负占空比	上升时间 突发宽度	下降时间 脉冲串长度	正脉冲宽度 X@min	负脉冲宽度 X @max	电压测量
. _}	延迟 ₅ → ӻ ▼ 建立时间	延迟 t → t ▼ 保持时间	延迟 f → t ▼ 建立保 持 比率	延迟 t → ƒ ▼ 波特率	相位 ᅿ → Ӻ ▼ CAN总线负载率	相位t→t▼	时间测量
	上升沿计数 面积-周期	下降沿计数 面积-全屏	正脉冲计数 正面积-周期	负脉冲计数 负面积-周期	触发计数器 正面积-全屏	负面积-全屏	✓ 拷贝到
	波形的峰峰值是	峰峰值 指最大值与最小值	之间的差值。	最大值 顶部值		_{直方图}	清除测量
				峰峰 底部值 最小值			- E D
® <mark>1</mark>	100mV/div 2 	Closed 3	Closed 4	Closed 		Run Auto	100 us/ Y-T 0.00s 1.40ms 5.60Mpts Norm 4.00GHz

图 12.10 峰峰值选择

										测 量
										统计开关 ON
т≁										测量项选择 マ
1										硬件频率计
15										OFF
										4 测量范围 ZOOM1
		Pk-Pk(C1)	Item2	Item3	Item4	Item5	Itemó	Item7	Ite	结果导出
	Current	340.0mV								
	Min	340.0mV								•
	Avg	340.0mV								测导运行器
	Stdev	0.000mV								测重项设置
	Count	16								*
z≰s [®]	1 100mV/	rdiv 2 Clos mV	ed 3 	Closed 4 	Closed			Run T 1 Edge	1 🖬 5 Auto 5 68m¥ 70	0.0 ms/ Y-T 0.00s 00ms 140Mpts prm 200MHz

图 12.11 峰值测量结果

12.5 硬件频率计

ZDS3000/4000 系列示波器还提供硬件频率计,对输入信号进行更精确的频率测量,测量结果显示在屏幕右上角。点击【Measure】进入测量菜单界面,选择【硬件频率计】。如图 12.12 所示,频率计可同时测量并显示 4 个通道输入信号的频率。

图 12.12 通道选择和频率显示

注:使用"频率计"前须调节相应通道的触发电平或使用"一键捕获"功能确保被测信号能稳定触发。

12.6 测量范围

测量范围可根据用户需求进行选择,测量范围有在普通模式下的计算,缩放模式下的计 算和光标范围计算,具体如下图 12.13 所示。

主时基	∢ 测量范围
ZOOM1	主时基
ZOOM2	结果导出
光标区域	-

图 12.13 测量范围选择

12.7 测量导出

参数测量提供"测量数据导出"功能,测量数据可导出为"网页报表"格式或者"CSV" 格式,具体如下图 12.14 所示。

点击【测量导出】进入导出界面,【文件类型】可以选择"所有文件"、"CSV"和"网页报表";

点击【保存路径】,旋转旋钮 B 选择相应的保存路径(可在路径下新建文件夹进行保存); 点击【保存文件】即可保存完成。

	磁盘浏览
所有文件	文件类型
CSV	CSV
网页报表	保存文件

图 12.14 导出报表

12.8 测量设置

部分测量项目需要在【测量项设置】菜单下,单独配置测量参数,如图 12.15 所示。需要在"选项设置"菜单里配置测量参数的测量项目包括脉冲串长度、建立时间、保持时间、 建立保持比率,如图 12.16 所示。若未选中图中的四个测量项目,则【测量项设置】菜单为 灰色,处于无效状态。

图 12.15 选项设置菜单

周期	频率	上升时间	下降时间	正脉冲宽度	负脉冲宽度
正占空比	负占空比	突发宽度	脉冲串长度	X@min	X @ma×
延迟 Ӻ→Ӻ ▼	延迟 t → t ▼	延迟 ƒ → t ▼	延迟 t → ƒ ▼	相位∮→∮▼	相位 t→t ▼
建立时间	保持时间	建立保持比率	波特率	CAN总线负载率	

图 12.16 须在"选项设置"菜单里配置的测量项目

12.9 阈值设置

用户可在阈值设置菜单里设置较低阈值、中等阈值、较高阈值,这三个阈值共同决定了 上升时间、下降时间、正脉宽、负脉宽等时间参数。阈值设置适用于所有信号通道,也适用 于搜索功能。阈值设置菜单如图 12.17 所示,在 ZDS3000/4000 系列示波器里,较低阈值、 中等阈值、较高阈值分别默认为 10%、50%、90%,详见图 12.17。

点击【Measure】后进入测量界面,旋转旋钮 A 至底端选择【阈值设置】进行调节即可。

图 12.19 翻页图标

13. 波形搜索

13.1 概述

用户可根据需要设置特定的搜索条件,令示波器自动搜索所需信号并标记搜索结果。通过 FPGA 全硬件并行处理,可在几百毫秒内快速遍历全存储深度的波形数据。

点击【Search】进入波形搜索界面,如下图 13.1 所示。

图 13.1 搜索设置菜单

13.2 信源选择

用户首先须确定搜索信号所在的通道,在图 13.1 所示菜单里按下"信源选择",可选择 CH1、CH2、CH3 或 CH4。

13.3 搜索模式

ZDS3000/4000 系列提供了 7 种搜索条件,例如上升 沿、下降沿、正脉宽、负脉宽、上升时间、下降时间、周 期、频率、正占空比、负占空比、正欠幅、负欠幅,如图 11.2 所示,用户可根据需求进行选择。

13.4 **搜索类型**

不同搜索模式有不同的搜索类型,详见表 13.1。

图 13.2 搜索模式

表	13.1	搜索类型解析
· • • •	10.1	这小人王府们

搜索类型	说明
边沿搜索	边沿搜索提供上升沿搜索 🖌、下降沿搜索 🖌。
脉宽搜索	脉宽搜索提供正脉冲搜索几、负脉冲搜索丁。
	限定符可用于设定按脉冲宽度的上限或下限或上下限搜索,可通过旋钮 A/B 调节其脉宽时间。

续	ト表
- 天-	

搜索类型	说明
	搜索类型选择土 卡为上升时间搜索;
上升/下降时间搜索	搜索类型选择了上为下降时间搜索。
	限定符可用于设定按上升时间/下降时间的上限或下限或上下限搜
	索,可通过旋钮 A/B 调节其上升时间/下降时间。
周期搜索	限定符可用于设定按周期的上限或下限或上下限搜索,可通过旋钮
	A/B 调节其周期。
频率搜索	限定符可用于设定按频率的上限或下限或上下限搜索,可通过旋钮
	A/B 调节频率。
	占空比搜索提供正占空比搜索、负占空比搜索。
占空比搜索	限定符可用于设定按占空比的上限或下限或上下限搜索,可通过旋
	钮 A/B 调节占空比。
	正欠幅脉冲搜索,负欠幅脉冲搜索
欠幅脉冲搜索	正负欠幅脉冲搜索

13.5 复制到触发

按下该按钮将当前搜索设置同步到触发设置中,可使用相同的设置进行触发,无需再重 新设置触发参数。

13.6 搜索结果显示

搜索功能开启后,使用全硬件搜索,当满足搜索条件时,搜索结果立刻实时显示。 搜索结果的显示格式在屏幕左上角,如下图 13.3 所示。

TAG:当前标记的编号/搜索事件总数

图 13.3 搜索结果显示示例

对通道编号、事件索引、搜索事件总数说明如下:

搜索源

通道编号包括 CH1、CH2、CH3 和 CH4。

搜索事件总数

当示波器处于运行状态,搜索事件总数是当前显示区域中搜索事件的总数;当示波器处于停止状态,搜索事件总数是全采样存储深度范围内的波形。

事件索引

事件索引是当前搜索事件的索引。当前搜索事件位于显示区域的中央,如图 13.4 所示。

图 13.4 事件索引

13.7 搜索与波形缩放综合运用

当示波器处于停止状态,用户可使用导航键浏览各个搜索事件,如图 13.5 所示。

图 13.5 搜索事件定位查看

在波形搜索时,点击示波器面板上的"波形缩放"按键进入缩放模式,若搜索条件成立则会在"主时基"的上方出现空心"白色倒三角形"的标记。

如图 13.4 所示旋转"时基偏移旋钮"使缩放窗口对准标记事件,点击"窗口切换"按 键使副时基为蓝色可调选框,此时可旋转"时基档位旋钮"不断地调小缩放窗口,可对已标 记的波形进行放大观察波形细节。

在波形搜索中找到与搜索条件相关的信号后会自动进行标记,点击"导航键"可以查看前后标记的波形事件,若标记的感兴趣事件较多可使用波形播放按钮,通过播放的形式观察 各个标记的波形信号。

13.8 搜索毛刺信号实例

- 1、通道1接入一个脉宽异常信号,点击【Auto Setup】一键捕获让波形以较好的效果显示 在屏幕中,如图 13.6 所示;
- 2、点击【Acquire】,选中其菜单右侧相应软键的【存储深度】,旋转旋钮 A 选择 512Mpts 的较深存储,短按旋钮 A 即可确认选择,调节水平时基尽量让屏幕上出现较多的波形;
- 3、点击【Measure】进入测量显示菜单,点击【测量项选择】进入测量界面,点击【时间 测量】后点击【返回】,即可查看所测的脉冲中最小脉冲的大小,大概在160ns 左右;
- 4、点击【搜索设置】进入搜索设置界面,【搜索使能】为"ON",【信源通道】为"CH1", 【搜索模式】选择"脉宽",【搜索类型】为"正脉冲",【限定符】为"小于",【小于】 中旋转旋钮 A 即可改变它的值,此例中调其值为 170ns (稍大于 160ns 即可);
- 5、调节水平时基旋钮,将时基调为 50ms 左右,尽量让屏幕上有较多的波形,结果如图 13.7 所示,屏幕上的三角形白点即位搜索结果;
- 6、点击"一键缩放"按键,波形进入单 ZOOM 显示模式;
- 7、点击【Stop】,在停止状态下,将水平时基慢慢调小即顺时针旋转旋钮 A 调节到可清楚 看见搜索的毛刺信号位置,如图 13.8;
- 8、此时屏幕上共出现5个搜索结果,显示在左上角,当前为第3个,点击波形探测区下方 的左右导航键可调到上一个或下一个搜索结果。

图 13.6 接入毛刺信号

图 13.7 搜索设置

图 13.8 搜索结果放大

14. 波形标注

14.1 概述

ZDS3000/4000 系列提供波形标注功能,可将感兴趣的事件标注,方便后期的查看和分析。本章介绍不同的波形标注方式具体的使用方法。

14.2 自定义标注(手动标注)

自定义标注即是用户根据需求进行手动标注,在缩放模式下查看波形细节,标注感兴趣 事件,点击【Mark/Clear】可标注触发中心位置的波形,如图 14.1 所示,自定义标注一次 可以标注多个波形信号,如图 14.2 所示,出现实心的白色倒三角符号,再次点击【Mark/Clear】 可清除触发中心已有的标注,或点击【Clear】"一键删除"可删除所有标注。

图 14.1 手动标注

图 14.2 手动进行多个标注

值得注意的是手动"标注/清除"只能"标注/清除"在中心触发点位置的波形,所以在 进行多个标注时可通过旋转水平偏移旋钮移动波形,将需标注的波形移至触发中心位置。

若想观看之前已标注波形的细节可在缩放模式下使用向左/向右导航键可以查看不同位置标注的波形如图 14.3 所示。

图 14.3 波形标注与查看

14.3 自动标注

使用波形搜索时,示波器将会在符合搜索条件的波形位置上方进行一次性自动标注,并可在缩放模式下展开所标注的波形查看波形细节(具体操作详见 6.5zExplore 波形缩放一节),如图 14.4 中的白色空心倒三角所示。

图 14.4 自动标注

15. 协议解码

15.1 概述

用户可通过解码功能轻松发现通信错误、调试硬件、加快开发进度,如图 15.1 所示。 解码帧信息简介如表 15.1。

图 15.1 解码功能示意(ZDS4054 Plus 型)

表 15.1 解码帧信息简介

序号	含义
(1)	最左边的箭头,用于标记一帧的开始
(2)	中间的括号内容,表示波形的协议解码结果
(3)	最右的箭头,用于标记一帧的结束

ZDS4054 Plus 示波器可对四个模拟通道(CH1-CH2-CH3-CH4)的输入信号进行协议解码,包括 UART、SPI、I²C、CAN-FD、CAN、FlexRay、USB、Wiegand、LIN 等 30 余种常用协议,如图 15.2 所示。

图 15.2 协议解码类型

图 15.3 解码菜单

15.2 操作步骤

- 1、通道1接入一个 CANH 协议信号,如下图 15.4 所示,点击【Auto Setup】一键捕获,让 波形以较好的效果显示在界面;
- 2、点击【Auto/Normal】触发方式切换为"普通",波形较稳定显示,顺时针调节水平时基 旋钮让波形至少一个完整帧显示在屏幕中央。
- 3、 点击"多功能区"的【Decode】解码按键,进入解码界面,出现如图 15.5 所示;

- 4、点击选择【解码类型】,旋转旋钮 A 选中"CAN",短按旋钮 A 即可确认选择"CAN" 协议如图 15.6 所示,点击【触发使能】为"ON",点击【协议参数】进入协议参数设置界面,旋转旋钮 A 可选中其中的参数,点击参数后通过旋钮 A 对其进行修改,参数 如图 15.7 所示;
- 5、点击【解码设置】进入解码设置界面,阈值的调节可进行"手动"或者"自动"阈值调 节,阈值也就是所谓的门限电压,因此这个阈值在波形的中间范围较为合适。
- 6、【显示方式】设置主要有"十六进制、十进制和字符",而 CAN 协议解码只能用十六进制显示;【细节显示】可以设置为"ON"或"OFF",解码设置如图 15.8 所示。
- 7、点击【返回】,选择【事件表】为"ON"即为打开事件表,如图 15.9 所示,打开事件 表,可通过旋转旋钮 B 对所有解码事件进行查看,在停止状态下,短按旋钮 B 可使解码 事件准确定位在屏幕中央,在停止状态下可点击【事件导出】,具体可参考 22.4 报表生 成。
- 8、 点击【解码线位置】可通过调节旋钮 A 或 B 调整解码线所在的位置, 如图 15.10 所示。

图 15.4 接入 CANH 协议

图 15.5 解码界面

ZDS3000/4000 系列示波器

						-			$\overline{\nabla}$							
															解码	
												ת הות ה	- PLUS	UART	▲ 解码类	型
T+													PLUS	I ² C	C.	٩N
													PLUS	SPI	触发使	Ĵ
	CAN						0200)		0×5A 0:	×4CX	0x47	0x34A4	PLUS	Modbus		лc
													PLUS	DSI	∢ 协议参	数
													PLUS	CAN	睽型:CAN_H	波
DEC 과													PLUS	CAN-FD	解码设	置
	í.	Tradicio		T:		Τ					A T A			ЦN		
	₽) →	Index 1	-15.5	5000ns		DATA	0200		03	5/	ata 4 4C 4	7	PLUS	Flexray		
													PLUS	SENT	解码线位	置
													PLUS	M∨B	声が	- ===
																on 0
	DA	TA: 5A 4	4C 47												7	
7/~®	1	500mV,	/div 2	Clos	ed	3 C		4	Closed					Stop Auto	20.0 div 54.4	ew lus
23	1:1 1MO	-1.	74V					-:-						T 2.50V CAN	280us 1.12Mp Norm 4.000	əts iHz

图 15.6 解码类型选择

图 15.7 CAN 协议解码参数设置

							¥				6 .7	加沙里
											册书	时反王
т→												自动阈值 OFF
												阈值通道
	CAN			Ko×	0200)((0×5A)(0×4	CX0x47X 0x34A4				通道1
											(A) (B)	当前阈值 2.44V
DEC ₽												
	В ,	Index	Time	Туре	ID		DLC	DATA		CRC		
	+	1	-16.5000ns	DATA	0200		03	5A 4C 47		34A4		细节显示
												ON
												返回
	DA	TA: 5A ·	4C 47									
zĿĢ®	1 	500m∨ -1.	/div 2 Clos 74V	ed 3 C	losed 	4	Closed		Stop T	1 🖬 Auto 2.50V	20.0 a 280us Norm	s/ View iv 54.4us 1.12Mpts 4.00GH₂

图 15.8 解码设置

图 15.9 打开事件表

													· · ·					解码	5
T→					· · · · · · ·												•	解码)类型 CAN
							:					<u>.</u>						触	え 使能
	CAN					-(0×	0200	M	0×5A	0x4	CX0x47	0x34A	4 []($\dots \rangle$					ON
																	⊲ :Cł	协议 H1 总线	↓参数 美型:C
DEC 🛃																		解	設置
	́В,	Index		Time		Туре	ID		DLC		DATA					CRC			Ť
	→	1	-16.5	5000ns		DATA	0200		03		5A 4C 4	7				34A4	`А `В)	解码线	粒置
																		핔	軒表
	DA	TA: 5A 4	4C 47													÷	/		ON
7 4 5®	<mark>1</mark> ι 1:1 1ΜΩ	500mV, -1.7	/div 2 74V	Clos	ed	3 C	losed 	4	Close	ed 					Stop T	1 🖬 Auto 2.50V	20.0 280u: Norm	us/ div = 5 1.12 4.1	View 64.4us 2Mpts 00GHz

图 15.10 解码线位置调整

15.3 解码各项设置

通过上面的例子大家对协议解码有了一定的了解,接下来将进行全面的讲解。

15.3.1 选择须解码的协议

首先用户须选择要解码的协议类型。在解码设置菜单里,用户可选择解码类型如图 15.2 所示,包括: UART、I²C、SPI、CAN-FD、CAN、USB、LIN 等。

15.3.2 协议触发

用户可设置是否启用协议触发功能,在如图 15.11 所示的协议解码菜单里【触发使能】 默认为"OFF"状态,点击可切换设置为"ON"状态,信号将按照协议的开始位、数据位 或地址位等进行触发。

图 15.11 触发使能

15.3.3 协议参数

在使用解码功能或协议触发功能之前,用户须设置波形的协议参数。以 UART 为例,当协议触发设置为 ON 时,点击【协议参数】进入协议参数界面,进行协议参数设置如图 15.12 所示。用户可设置总线参数和触发参数,总线参数和触发参数会根据不同的协议有所不同。

	④ 通	i过旋钮A进行选	择操作,按下进	入相应设置。			٩	解码类型
设置总线参数	总线 设置	通道使能 CH1▼	数据位宽 8▼	波特率 9600 ~	结束位宽 1▼	校验模式 None ▼		UART
		数据模式 LSB	电平反相 FALSE					协议触发 ON
设置触发参数	触发 设置	触发模式 开始触发					۲ ز	协议参数

图 15.12 设置协议参数

注意: 可通过旋钮 A 在协议参数菜单中选择, 短按旋钮 A 进入相应设置。

15.3.4 解码设置

若用户需对解码进行设置,可点击【解码设置】进入解码设置菜单,如图 15.13 所示。

图 15.13 解码设置界面

(1) 设置通道阈值

一般情况下,进行解码时系统会按照波形情况自动设置通道阈值,若波形不是正常的规则信号,在运行解码功能之前,用户须自行设置通道阈值,高于通道阈值的信号电压识别为高电平,低于通道阈值的信号电压识别为低电平。通道阈值可自动设置,也可手动设置,详见图 15.14。

图 15.14 解码设置说明

(2) 显示方式设置

74分 致远电子

按下【显示方式】软键,在弹出的对话框里可选择解码分析结果的显示格式为十六进制、 十进制、ASCII字符,如图 15.15 所示。

图 15.15 编码设置

注意:当解码类型设置为 CAN 协议、CAN-FD 协议与 LIN 协议时,其显示方式默认为十六进制,故此时 显示方式选项不可选择。

(3) 细节显示

用户可选择将解码信息中一些不重要的部分屏蔽暂不显示,便于观察重要数据;在 如图 15.13 所示解码设置菜单里,可选择关闭或开启细节显示功能,详见图 15.16 中细 节显示功能开启与关闭时的显示内容对比。

图 15.16 细节显示与细节显示关闭

15.3.5 事件表

示波器支持以列表方式显示当前解码帧的帧信息,即事件表,如图 15.17 所示。

图 15.17 事件表

在图 15.17 中的事件表中具体的解析如下:

- ▶ 第一栏中的蓝色箭头 → 为事件表光标,用于指示当前正在查看的事件;
- ▶ "1"为帧的编号;
- ▶ "0ns"为帧的开始时间;
- ▶ "DATA"为帧的类型;
- ▶ "0200"为帧的 ID;

后面三栏的内容因协议类型不同而变化,图 15.17 中显示的为 CAN 总线的一些信息:

- ▶ "DLC"为数据长度代码;
- ➤ "DATA"为帧的数据;
- ▶ "CRC"为循环冗余检验。

打开事件表,可通过旋转旋钮 B 对所有解码事件进行查看。在停止状态下,短按旋钮 B 可使解码事件准确定位在屏幕中央,在停止状态下可点击【事件导出】,具体可参考 22.4 报 表生成。

15.4 CAN-FD 解码实例

CAN-FD 在继承 CAN 绝对优势的基础上,弥补了 CAN 本身总线带宽和数据长度的不足。它可在保持通信可靠性的同时,通过变速传输方式大幅度的提高了数据吞吐量。

CAN-FD 升级的内容:

- 可单独提高数据段的传输波特率,最大可升高到 8Mbit/s;
- 增大每帧数据长度,字节数从8提升到64;
- 使用新的 CRC 校验方案;
- 向下兼容 CAN 协议;

15.4.1 CAN-FD 解码操作步骤

1、 将 CAN-FD 的信号接到通道 1 中,点击【Auto Setup】一键捕获波形,让波形以较好的 效果显示在界面,如图 15.18 所示;

图 15.18CAN-FD 信号捕获

- 2、 击【Auto/Normal】将【触发方式】由自动 "Auto" 切换为普通 "Normal", 使信号在 默认上升沿触发方式下进行触发和显示;
- 3、 点击示波器面板上【Decode】键,进入解码界面;
- 4、 点击【解码类型】旋转旋钮 A 选中协议,短按旋钮 A 即可将设置为 CAN-FD,点击【协议触发】为"ON"(当对协议进行触发设置后,此处固定为 ON),此操作其实就是将触发类型设置为 CAN-FD,如图 15.19 所示;

图 15.19 CAN-FD 解码类型选择

5、用户按下【协议参数】软键,可以对协议参数进行设置,旋转旋钮 A 可选择参数,短 按旋钮 A 后可进行参数修改,其中包括"总线设置"与"触发设置",如图 23.20,CH1 为信号输入,总线类型为 CAN_L 或 CAN_H,波特率为 500K(可选或自定义)即普通

的传输速率,FD 波特率为 500K (可选或自定义)即 CAN-FD 数据段传输的速率,一般 FD 波特率要高于普通波特率,触发模式"开始位触发"或"数据帧触发"。

						· · · · · · · · · · · · · · · · · · ·							解码	
			④ 通过旋	钮A进行选择	操作,按下进	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	므						《 解码类	型
			总线	CAN-FD	总线类型	波特率	率(K)	FD波特	率(K)	采样	位置%		CAN-	FD
T→			设直	CH1 🖵	CAN_L 🖕	500		500	0.00 🖵				触发使 (file コント
DEC ₽	CAN-I	FD 										xx	◀ 协议参	数
			触发	触发模式								100	H1 总线类型:	CA
				77年112 -									解码设	置
	В,	Index	Time									CRC		
	->	1	<u>1.35001ms</u>	FD DATA	1FFC1F1F		<u>ee ee e</u>	<u>e ee ee</u>	<u>ee ee ee</u>	FF FF	FF FF	1FFFFI		
		2	1.25000ns	FD DATA	1FFC1E1E	0F	EE EE E	E EE EE	EE EE EE	EE EE	EE EE	1FFFFI	解码线位	玊
		3	1.35001ms	FDE X T ERR	1FFC1E1E	0F	EE EE E	E EE EE	EE EE EE	EE EE	EE EE			
													事件	表
														DN
	DA	TA: EE EI	E EE EE EE EE E	E EE EE EE EE	EE EE EE EE	ee ee ee ee	EE EE E	e ee ee i	ee ee ee	EEEE				
zĿG®	1	2.00V/	div 2 Clos	ed 3 C	losed 4 -	Closed					Trig T	1 🖬 g Auto 3.00V 3	0.0 us/ div 310 .50ms 14.0Mp	-T lus >ts
	10:1 1MΩ	-3.2	.+v -:-	-:-	-:-						CAN-	FD N	orm 4.00G	Hz

图 15.20CAN-FD 协议参数配置

6、配置好协议参数后打开事件表即可查看所有的解码数据列表,如图 15.21 所示,旋转旋钮 B 可选中对应的数据帧,短按旋钮 B 可定位选中的数据帧对其进行分析。

图 15.21 CAN-FD 解码效果

15.5 I²C 解码实例

本节介绍 ZDS3000/4000 系列示波器的 I²C 触发与解码。

15.5.1 I²C 解码操作步骤

- 1、 将 I²C 的数据和时钟信号分别接到通道 1 和通道 2 中, 点击【Auto Setup】一键捕获波形, 让波形以较好的效果显示在界面;
- 2、点击【Auto/Normal】将【触发方式】由自动"Auto"切换为普通"Normal",使信号在 默认上升沿触发方式下进行触发和显示;
- 3、点击示波器面板上【Decode】键,进入解码界面;
- 4、 点击【解码类型】旋转旋钮 A 选中协议,短按旋钮 A 即可将设置为 I²C,点击【协议触发】为"ON"(当对协议进行触发设置后,此处固定为 ON),此操作其实就是将触发类型设置为 I²C;
- 5、用户按下【协议参数】软键,可以对协议参数进行设置,旋转旋钮A可选择参数,短 按旋钮A后可进行参数修改,其中包括"总线设置"与"触发设置",如图15.24,通 道1为时钟信源,通道2为数据信源,地址类型为7位,触发模式设为地址值,触发地 址为0x50,读写模式为R,响应类型为ACK。

(1) 总线设置

总线设置包括时钟信源、数据信源和地址类型:

- ▶ 时钟信源可以选择 CH1-CH2-CH3-CH4,多个通道不能同时选中同一通道。此项设置应与实际输入示波器的信号类型相符;
- 地址类型默认设为 7 位,还可以设为 10 位。10 位寻址格式与 7 位寻址格式类似, 只是主模块通过两个字节的传输来发送从地址。具体区别如图 15.22 与图 15.23 所示。

↓ 1	¥ 7 →	↓ 1	↓ 1	n n	→ 1 →	n	→ † 1	↓ 1
s	Slave address	R/W	ACK	Data	ACK	Data	ACK	Р

第一个字节

图 15.23 10 位寻址

(2) 触发设置

触发设置是对触发模式的设置。I²C 协议触发模式共包括 3 种模式: 起始位、结束位和 地址值。

- 6、用户在设置好【协议参数】后,就可以按下【解码设置】软键,对协议进行解码,其中 包括对【阈值设置】、【显示方式】与【细节显示】,通过旋钮A可对它们进行操作;
- 7、按下【事件表】软键,使其显示 ON,用户可以通过查看事件表更清晰地了解 I2C 协议 信号。同时可以通过旋转旋钮 B 来查看各个事件,在停止状态下,短按旋钮 B 可定位 到选中的解码事件,如图 15.25。在停止状态下可点击【事件导出】,具体可参考 22.4 报表生成。

④通	 通过旋钮A进行选择操作,按下进入相应设置。 														
总线 设置	时钟信源 CH1 🚽	数据信源 CH2 🚽	地址类型 7位	地址R/W合并 ON	传输速度 Normal										
触发 设置	触发模式 ^{地址值} →	触发地址 0×0	读写模式 R	响应类型 ACK											
	起始位 结束位														
	地址值														

图 15.25 I²C 协议解码图 (7 位地址模式)

(3)7位寻址与10位寻址模式设置示例

图 15.26 为 7 位寻址与 10 位寻址的解码与事件表的对比图。

8	序号	开始时间	结束时间	名称	数据	
+	1	-292.980us	-287.960us	START		
	2	-282.920us	-217.260us	ADDR_H	0×50	
10位寻址描式		-212.240us	-207.160us	W		
10位守址侯式	4	-202.140us	-197.080us	ACK		
		-192.040us	-116.280us	ADDR_L	0x40	
	6	-111.240us	-106.180us	ACK		
	7	-95.420us	-90.400us	START		
8,	序号	开始时间	结束时间	名称	委父居	
+		-292.980us	-287.960us	START		U.
	2	-282.920us	-217.260us	ADDR	0×50	
7位寻址構式		-212.240us	-207.160us	W		
7位守址侯氏	4	-202.140us	-197.080us	ACK		
		-192.040us	-116.280us	DATA	0x40	
	6	-111.240us	-106.180us	ACK		
		-95.420us	-90.400us	START		

图 15.26 7 位与十位地址模式解码对比

(4) 显示方式设置示例

在解码设置中可对解码波形的显示方式进行设置,显示方式包括十六进制、十进制和字 符显示三种类型,如下图所示。

图 15.27 十六进制显示

图 15.28 十进制显示

图 15.29 字符显示

(5) 细节显示效果图

在解码设置中同样可对细节是否显示进行设置,用户可通过按下细节显示软键,对细节显示设置为 ON 或是 OFF。细节显示与关闭的区别主要体现在解码的事件个数。

图 15.31 细节关闭

图 15.30 与图 15.31 中解码的事件表显示分别如图 15.32 和图 15.33。由事件表可得知, 细节显示时有 16 个事件,而细节关闭时只有 8 个事件。同时可看出,细节关闭的解码内容 相对细节显示的解码内容来说,开始位、ACK 位和 NACK 位都没有显示。用户可根据具体 情况设置细节的开启与关闭。

序号	开始时间	结束时间	名称	数据	
1	-292.640us	-287.600us	START		
2	-282.600us	-216.920us	ADDR	0×50	
3	-211.880us	-206.800us			
4	-201.800us	-196.720us	ACK		
5	-191.680us	-115.920us	DATA	0×40	
6	-110.880us	-105.800us	ACK		
7	-95.400us	-90.360us	START		
8	-85.360us	-19.680us	ADDR	0×50	
9	-14.680us	-9.600us	R		
10	-4.560us	520ns	ACK		
11	5.680us	81.480us	DATA	0x5A	
12	86.480us	91.560us	ACK		
13	99.560us	175.360us	DATA	0×4C	
14	180.360us	185.440us	ACK		
15	192.440us	268.200us	DATA	0x47	
16	273.240us	278.320us	NACK		

图 15.32 细节显示完整事件表

75 致远电子

序号	开始时间	结束时间	名称	数据	
1	-282.840us	-217.160us	ADDR	0×50	
2	-212.120us	-207.040us	W		
	-191.480us	-115.680us	DATA	0×40	
4	-85.360us	-19.680us	ADDR	0×50	
	-14.680us	-9.600us	R		
6	6.200us	81.960us	DATA	0×5A	
	97.080us	172.880us	DATA	0×4C	
8	187.920us	263.680us	DATA	0x47	

图 15.33 细节关闭完整事件表

15.6 UART/RS232/422/485 解码实例

UART 作为一种常用协议,考虑到用户对该协议的需求,ZDS3000/4000 系列示波器也 开放了对 UART 协议的解码。本章主要介绍 UART 协议的触发与解码操作。

这里说的 UART 是指 TTL 电平的串口, 而 RS232 是负逻辑电平, 即高电平为逻辑"0", 低电平为逻辑"1", 故在解码 RS232 时需将电平反相。具体见 UART 解码(3)总线设置中的电平反相。同样, 在解码 RS422/485 时, 也应注意电平是否要设置**反相**的问题。

在协议进行触发时,要注意设置合适的触发电平,在协议解码操作时,要注意设置合适 的解码阈值。

15.6.1 UART 解码操作步骤

- 1、将 UART 的 TXD 接到通道 1 中,点击【Auto Setup】一键捕获波形,让波形以最好的效果显示在界面中;
- 2、点击【Auto/Normal】将【触发方式】由自动"Auto"切换为 普通"Normal",使信号 在默认上升沿触发方式下进行触发和显示;
- 3、 点击示波器面板上【Decode】键,进入解码界面;
- 4、 点击【解码类型】,旋转旋钮 A 可选中协议,短按旋钮 A 可将协议设置为 UART,点击 【协议触发】为"ON"(当对协议进行触发设置后,此处固定为 ON,此操作其实就是 将触发类型设置为 UART),信号将触发类型由上升沿改为 UART 协议触发,信号可稳 定显示;
- 5、 用户按下【协议参数】软键,旋转旋钮 A 可选中参数,短按旋钮 A 可以对协议参数进行设置,其中包括总线设置与触发设置,如图 15.34。

图 15.34 解码协议参数

(1) 总线设置

总线设置中包括对7个指标的设置,下面分别对其进行介绍。

▶ 通道使能

用户可在通道使能选项菜单中可选择通道 1、通道 2、通道 3 和通道 4。当四个通道都 未选中时,通道使能显示为 NONE。

▶ 数据位宽

可选择4、5、6、7、8、9、12、16,默认为8位。

▶ 波特率

图 15.35 波特率自定义

据通道信号数据的最小脉宽的倒数来估算通道信号的波特率。

▶ 结束位宽

结束位为一段数据的结束标志,可以设置为1位,1.5位,2位。默认为1位。

▶ 校验模式

校验位可有可无,用户可根据自己的具体需要设置。ZDS3000/4000 系列示波器校验模式可选择: Even (偶校验)、Odd (奇校验)、Mark (填充 1)、Space (填充 0)、None (无校验)。默认为 None (无校验)。

▶ 数据模式

数据模式有两种选择:LSB、MSB。默认为LSB 即最低有效位,数据低位先传输。而 MSB 即最高有效位,数据高位先传输。

▶ 电平反相

在解码的过程中,对原始信号的电平取反,当设置为"TRUE"时,电平反相;当设置为"FALSE"时,电平不反相。

图 15.36 ZDS3000/4000 系列示波器的 UART 信号

(2) 触发设置

触发设置分为**开始位触发和数据触发**,具体内容详见 10.5 触发设置

ZDS3000/4000系列示波器 UART 协议的触发模式包括开始触发与数据触发两种。

▶ 开始触发

当选择开始位触发则遇到开始位进行触发。

▶ 数据触发

 通过旋钮A进行选择操作,按下进入相应设置。 												
触发 设置	触发源 通道1	触发模式 数 据触 发	数据位宽 8 ~	触发数据 0×5A	波特率 9600 ▼							
	结束位宽 1▼	校验模式 None ▼	数据模式 LSB	电平反相 FALSE								
		Even Odd Mark Space										

图 15.37 数据触发模式设置

当选择数据触发模式时,则需要进一步具体设置,数据输入为十六进制,范围为0x00~0xFF,可通过旋钮 A 微调,旋钮 B 粗调。

对于数据触发,用户还须对数据位宽、触发数据、波特率、结束位宽、校验模式、数据 模式和电平是否反相进行设置。

其中校验模式包括: Even (偶校验)、Odd (奇校验)、Mark (填充 1)、Space (填充 0)、 None (无校验)。系统默认为 None (无校验)。

- 6、用户在设置好【协议参数】后,就可以按下【解码设置】软键,对协议进行解码,其中 包括对【阈值设置】、【显示方式】与【细节显示】;
- 7、按下【事件表】软键,使其显示"ON",用户可以通过查看事件表更清晰地了解 UART 协议信号。同时可以通过旋转旋钮 B 来查看各个事件,在停止状态下,短按旋钮 B 可 定位到选中的解码事件。如图 15.38。在停止状态下可点击【事件导出】,具体可参考 16.2.2 报表生成。
- 8、 UART 协议触发设置条件为 8 位数据位宽,触发数据为 0x5A (字符显示为 Z),波特率为 9600,1 位结束位宽,无校验模式,数据模式为默认的 LSB,电平无反相。由图 15.38 中所示可知 UART 协议触发点准确定位在数据 0x5A。

图 15.38 UART 协议触发与解码

16. 【Trace】一键轨迹

16.1 概述

一键轨迹为快速保存 REF 的按键,可以保持当前的波形轨迹,无需繁复的操作,一键操作即可将通道波形临时保存,当点击【Clear】时可将暂存的轨迹清除。

注:一键轨迹一次只能存储一个波形轨迹,若想存储多个波形轨迹请打开【Ref】进行设置。若通道1已保存轨迹,打开通道2后需暂存其轨迹,点击【Trace】通道1轨迹将会清除,当前轨迹为通道2轨迹。

16.2 具体使用

本次案例对同一波形不同时间段的波形变化进行比较。

- 1、通道1接入视频信号,点击【Auto Setup】一键捕获波形,让它以最好的效果显示在屏幕上;
- 2、点击【Auto/Normal】将触发方式切换为"Normal"普通的形式;
- 3、点击【Trigger】进入触发菜单,触发类型选择"视频触发",配置好通道源 CH1、负极 性和 NTSC 视频格式等,并调节"触发电平偏移旋钮"将触发电平调至信号的负极性部 分,可看到波形在负极性稳定触发并显示,如图 16.2 所示;
- 4、调节"垂直档位旋钮"至1V/div 左右,合适即可;
- 5、调节"水平时基旋钮"将时基档位调至 50us/div, 合适即可;
- 6、此时点击【Trace】将视频信号进行临时保存,可看到有参考波形轨迹显示在屏幕上如图 16.3 所示;
- 「点击【REF】进入参考波形界面,可对参考波形在垂直方向上调节,点击调节软键如图 16.4 所示,旋转旋钮 A 可调节垂直档位,旋转旋钮 B 垂直移动参考波形至合适的位置;
- 8、点击【Stop】在停止状态下可观察波形的变化情况,如图 16.5 所示;
- 9、可将参考波形进行保存,点击【导出文件】,选择"参考波形"文件类型,后缀为.ref, 以方便后期进行二次分析。

图 16.2 视频触发

图 16.3 一键轨迹波形

图 16.4 参考波形垂直方向调节

图 16.5 波形对比分析

17. FIR 硬件实时滤波器

17.1 概述

FIR 数字滤波器是"有限长单位冲击响应滤波器",又称为非递归型滤波器,它可以在保证任意幅频特性的同时具有严格的线性相频特性,同时其单位抽样响应是有限长的。

FIR 硬件实时数字滤波器处于数字信号处理前端,可以对 ADC 采样的数字信号进行实时低通滤波,可广泛应用于电源、电机测试等场合,能有效滤除噪声与干扰信号。

图 17.1FIR 滤波界面

17.2 通道源

用户首先须确定输入信号所在的通道, 在如图 17.2 所示菜单里按下"通道源", 可选择 CH1、CH2、CH3 或 CH4。

通道源选择	滤波
CH1	∢ 通道源
CH2	CH1
СНЗ	滤波触发
CH4	OFF
	滤波显示
+++++++++++++++++++++++++++++++++++++++	OFF

图 17.2 通道源选择

17.3 滤波触发/显示

【滤波触发】默认是关闭 OFF 状态,经过 ADC 后的波形直接进行触发;点击切换为 ON 状态,此时经过 ADC 后的波形会先经过滤波再进行触发。

【滤波显示】默认是关闭 OFF 状态,经过 ADC 后的波形直接进行存储和显示;点击切换为 ON 状态,此时经过 ADC 后的波形会先经过滤波再进行存储和显示。

主要如图 17.3 所示。

图 17.3 滤波触发和显示

17.4 滤波频率

【滤波频率】可通过旋钮 A 进行细调, 旋钮 B 进行粗调, 滤波频率范围为 50Hz~200MHz, 如图 17.4 所示。信号高于所设置的滤波频率时将会进行滤波处理。

1	氏通滤波
4	通道源 CH1
	滤波触发 ON
	滤波显示 ON
(A) (B)	滤波频率 4.47kHz
	框图显示 ON

图 17.4 滤波频率调节

17.5 运用实例

通道1和通道2输入相同的500 Hz 带噪声的信号,通道1不使用 FIR 硬件滤波功能, 通道2使用 FIR 硬件滤波功能,且开启滤波显示,滤波频率为536Hz,在【框图显示】为"ON" 的状态下可以看到滤波设置情况,【框图显示】为"OFF"时可关闭框图显示信息,效果如 图 17.5 所示。

图 17.5 噪声滤波设置

图 17.6 噪声滤波效果图

18. 数学运算

18.1 概述

ZDS3000/4000 系列示波器可实现各通道波形的多种数学运算,包括加法(A+B)、减法(A-B)、乘法(A×B)、除法(A÷B)、微分、积分、三角函数、指数、对数、开方、绝对值、取反、逻辑运算等。用户按下前面板的数学运算功能键【Math】,显示数学运算菜单如图 18.1 所示,用户可选择运算模式、表达式类型、信源等。

图 18.1 数学运算面板

18.2 模式选择

点击【模式选择】可以选择【基本运算】、【趋势图】、【高级运算】其中的一种运算模式。 如下图 18.2 所示。

	数学运算
基本运算	↓ 模式选择
趋势图	基本运算
高级计算	4 算法选择

图 18.2 模式选择

18.3 基本运算

基本运算主要是加法,减法,乘法,除法,微分和积分的运算。

18.3.1 运算类型

点击【算法选择】,可以选择不同的运算方式,如图 18.3 所示。

+	4 算法选择
(1991)	+
×	4 信源A
+	СНІ
微分	4 信源B
积分	CH1

图 18.3 算法选择

18.3.2 信源选择

信源 A 和信源 B 可以选择 CH1、CH2、CH3、CH4、REF1、REF2、REF3、REF4、REF5, 如图 18.4 所示,选择完信源后将会按照所选的通道进行数学运算。

图 18.4 信源选择

18.3.3 垂直档位/偏移

(1) 旋转旋钮 A 可用于调节运算后波形的垂直量程,其中:

加/减的调节范围: 20uv/div~20Kv/div 乘/除/微分的调节范围: 1uv/div~500Mv/div 积分的调节范围: 1uv/div~500Gv/div

 (2) 旋转旋钮 B 可调节运算后波形的垂直偏移,其中: 加/减的调节范围: -80Kv ~+80Kv
 乘/除/微分的调节范围: -2Gv ~+2Gv
 积分的调节范围: -2000Gv ~+2000Gv

具体调节如图 18.5 所示。

4	信源B CH1
(A) (B)	2.00V/div -6.16V
	反相 OFF

图 18.5 运算波形垂直调节

注:当用户改变了"模式选择"、"算法选择"、"信源 A"、"信源 B"中任一个菜单的设置后,数学运算波 形的档位与偏移可自动调节以进行合适的显示。

18.3.4 **反相**

主要用于运算后波形的反相显示。

18.3.5 实例运用

积分运算可以伏-秒为单位计算脉冲能量或测量波形下的面积。以积分信源 A 的方波波 形为例,参数配置及实现效果如下图 18.6 所示。

图 18.6 积分运算

18.4 高级运算

高级运算包含基本运算符、逻辑运算符、函数运算等组合而成的多项表达式运算,主要 是微分、积分、对数、指数、三角函数以及逻辑关系等多种运算方式的综合运算。可自定义 运算表达式的运算方式和运算类型,主要界面如下图 18.7 所示。

图 18.7 高级运算界面

- 表达式:主要是由通道、函数、变量、运算符和数字等组成的表达式。表达式长度限制为 64 个字节。
- ▶ 通道选项:可以选择 CH1、CH2、CH3、CH4、REF1、REF2、REF3、REF4、REF5 中任一通道或者多个通道。
- ▶ 函数选项: 主要提供几种常用的函数式,下表 18.1 为各个函数的功能。
- 运算选项:主要是逻辑运算符的选择,如下表 18.2 所示,表 18.3 为基本运算关系介绍。
- ▶ 数字选项:可选择 0~9 之间的整数数字,与通道选项或者函数选项组成运算表达式。
- ▶ 正负选项:可选择 "+"或者 "-"两种,可对选项进行取正或取负处理。

函数名	功能
Intg(积分的计算。对波形的积分运算可以衡量波形下的面积或脉冲能量
Diff(离散时间的微分计算。对波形微分可以衡量波形瞬间的斜率
Ln(所选项的自然对数的计算(以常数 e 为底数)
Exp(所选项的指数计算,即以 e 为底的指数计算
Sqrt(所选项的平方根计算
Sine(所选项的正弦值计算
Cos(所选项的余弦值计算
Tan(所选项的正切值计算

表 18.1 函数选项功能

表 18.2 运算符选项功能

运算符	功能
+, -, *, /	基本运算:加、减、乘、除
$<, >, \ge, \le, =, ! =$	关系运算符:大于、小于、大于等于、小于等于、等于、不等于
&&、 、!	逻辑运算符: 与、或、非
()	圆括号:可用于提高括号内运算符的优先级

表 18.3 逻辑运算选项表

运算符	具体描述			
	两个二进制位逻辑与关系如下所示:			
与 "&&"	А	В		A&&B
	0		0	0
	0		1	0
	1		0	0
	1		1	1
	两个二进制位逻辑或关系	如下所示:		
	А		В	A B
〒 "川"	0		0	0
戝	1		0	1
	0	1		1
	1		1	1
	一位二进制逻辑非运算结果如下所示:			
丰 "!"	А		! A	
F	0		1	
	1		0	
	关系运算符">"运算结果如下(条件是 A <b):< th=""></b):<>			
大于">"	A>B	A <b< td=""><td>A=B</td></b<>		A=B
	0	1		0
小于 "<"	关系运算符"<"运算结果如下(条件是 A <b):< th=""><th></th></b):<>			
	A>B	A <b< td=""><td>A=B</td></b<>		A=B
	0		1	0

途	ト表
27	

运算符	具体描述		
	关系运算符 "≥"运算结果如下 (条件是 A <b):< th=""></b):<>		
大于等于"≥"	A>B	A <b< th=""><th>A=B</th></b<>	A=B
	0	1	0
	关系运算符 "≤"运算结果如下 (条件是 A <b):< th=""></b):<>		
小于等于"≤"	A>B	A <b< td=""><td>A=B</td></b<>	A=B
	0	1	0

18.4.1 **自定义表达式操作**

如图 18.8 界面所示:

- 旋转旋钮 B 可以选择【通道选项】、【函数选项】、【运算选项】、【数字选项】和【正负选项】中的任意一项(如果它们当前是被选择的),按下旋钮 B,所选的项目将显示在 "表达式"的方框中。
- 在编辑表达式时,可以通过【删除】键删除当前输入框中光标左侧的字符,也可以通过
 【清除】键,清除表达式框中已输入的所有字符。
- 完成表达式编写后,点击【应用】,示波器将根据您的表达式进行运算并显示结果。点击"运用"后,自定义表达式界面关闭,已设置的表达式将会在屏幕下方一栏显示。

18.4.2 垂直档位/偏移

旋转旋钮 A 可用于调节运算后波形的垂直量程,调节范围为 1uv/div~500Gv/div,旋转 旋钮 B 可调节运算后波形的垂直偏移,调节范围为-2000Gv ~2000Gv。

18.4.3 运用实例

通道1输入电压信号,通道2输入电流信号,对两个信号的乘积(功率)进行积分运算 可以得到信号的能量损耗,具体运算如下图 18.8 所示。

图 18.8 能量损耗表达式

确认选择表达式后,点击"应用"可进行表达式运算,点击"返回"可查看运算结果, 如下图 18.9 所示。

图 18.9 能量损耗运算结果

可对运算波形进行垂直量程/偏移进行调节,旋转旋钮 A 可以调节垂直量程,旋转旋钮 B 可以调节垂直偏移,让波形可以在屏幕中较好的显示,如图 18.10 所示。

图 18.10 滤波波形垂直调节

高级运算可对信号进行区域运算,点击【区域计算】为"ON"状态,可打开区域计算, 通过点击【Cursor】打开光标测量,可移动光标 A 和 B 选择计算的范围,如图 18.11 所示。

图 18.11 能量损耗的区域运算结果

18.5 趋势图

趋势图是数学运算里高级运算分析的一种形式,趋势运算界面如图 18.12 所示。趋势图 主要有频率、周期和占空比三种类型如图 18.13 所示,也就是用户可通过趋势图观看信号的 频率、周期和占空比的变化情况,并描绘成曲线显示在屏幕上。

元标测重亚示 相应的占空比

图 18.12 趋势运算界面

图 18.13 趋势运算类型

18.5.1 信源选择

趋势图提供了 CH1、CH2、CH3、CH4 四种信源,用户可根据所需进行选择,如图 18.14 所示。

	数学运算
	使式选择 趋势图
CH1	▲ 信源选择
CH2	CH1
СНЗ	《 类型
CH4	占空比

图 18.14 信源选择

18.5.2 垂直档位/垂直偏移调节

趋势图运算后的波形可通过旋钮 A 和旋钮 B 调节垂直档位和垂直偏移,如图 18.15 所示。选择菜单后根据信号对其进行垂直调整。

图 18.15 垂直调节

18.5.3 运算范围

数学运算支持区域计算,用户可根据需求选择所要测量的范围,如图 18.16 所示。运算 范围有主时基、ZOOM1、ZOOM2 和光标区域。其中主时基表示整个采集的波形区域,ZOOM1、 ZOOM2 表示缩放窗口内的波形区域,而光标区域则是通过移动光标确定测量范围。

围
堪
置
*

图 18.16 运算区域选择

18.5.4 阈值设置

用户可在阈值设置菜单里设置较低阈值、中等阈值、较高阈值,这三个阈值共同决定了 正脉宽、负脉宽等时间参数,进而影响占空比和频率的测量。在 ZDS3000/4000 系列示波器 里,较低阈值、中等阈值、较高阈值分别默认为 10%、50%、90%,如图 18.17 所示。

趋势图与参数测量和波形搜索三者的阈值设置是相联系的,改变任何一处的阈值,其他 均会跟着改变,详细说明见 12.9 节。

图 18.17 阈值设置

18.5.5 实例分析

给示波器输入一个调频信号,通过趋势图可观察调频信号的频率变化情况。

- ▶ 捕获信号并调整合适的时基档位和垂直档位,让波形显示在屏幕中央;
- 点击【Math】进入数学运算界面,【模式选择】为"趋势图",【信源选择】为"CH1", 【类型】为"频率",可观察到有一条紫色的波形显示在屏幕上,该波形为趋势运算后的波形;
- ▶ 点击"垂直调节"菜单可适当调整运算后波形的垂直档位和垂直偏移;
- ▶ 点击"FFT"可清晰的看到调频信号的频谱分布情况,如图 18.18 所示;

图 18.18 趋势分析

- ▶ 开启色温显示可以观察频率的分布情况,如图 18.19 所示,颜色越深出现的概率就越大。
- 点击"缩放模式"进入双 ZOOM 缩放状态,可观察具体的频率变化细节,若想观察信号不同位置的频率情况,可通过光标测量定位波形信号,在屏幕的下方将显示信号的频率值,如图 18.19 所示,可观察到光标测量值与 FFT 分析的频谱分析值是相对应的。 色温显示

光标测量值

图 18.19 趋势分析效果图

19. FFT 运算

19.1 概述

用户可使用 FFT 运算功能计算快速傅立叶变换。执行 FFT 运算后,FFT 频谱被绘制在 示波器显示屏上,水平轴的读数单位为赫兹(Hz),垂直轴的读数单位为 dB 或 V。使用 FFT 运算功能可查找串扰问题、在模拟波形中查找由放大器非线性引起的失真问题或用于调整模 拟滤波器。ZDS3000/4000 系列示波器支持通过 FFT 运算完成以下工作:

- ▶ 测量系统中的谐波分量和失真;
- ▶ 测量直流电源中的噪声特性;
- ▶ 分析振动。

图 19.1 FFT 面板

图 19.2 FFT 界面视图

19.2 FFT 样本点数

ZDS3000/4000 系列示波器 FFT 运算支持的样本点数为 500、1K、2K、5K、10K、20K、50K、100K、200K、500K、1M、2M、4M;示波器在运行模式下,支持的最大 FFT 样本点

数为 100K 点, 在停止模式下支持的最大 FFT 样本点数为 4M 点。具体的 FFT 样本点数由示 波器采样点数决定, 如下所述。

示波器处于运行模式

当示波器采样点数小于或等于 100K 点, FFT 样本点数在支持的样本点数中取最接近且 不大于示波器采样点数的值; 当示波器采样点数大于 100K 点, FFT 样本点数固定 100K 点。 注: 当处于 Zoom 缩放显示模式,示波器采样点数以缩放显示视图内的采样点数为准。

示波器处于停止模式

当示波器采样点数小于或等于 4M 点, FFT 样本点数在支持的样本点数中取最接近且不 大于示波器采样点数的值; 当示波器采样点数大于 4M 点, FFT 样本点数固定为 4M 点。 注: 当处于 Zoom 缩放显示模式,示波器采样点数以缩放显示视图内的采样点数为准。

19.3 运算界面

FFT 运算显示界面如图 19.3 所示,相关说明如表 19.1 所示。

采样	点数 频	谱分辨率 采	样率										
	4									频率值	有效值	相位	
	N=4.00N	1 △f=714mHz	Sa=2.86MSa/	s		垂直方向的	」幅值档位	立. 50.0mV/div		freq/Hz	Vrms/V	Phs/r	
	THD=0.4	7% SNR=11.34	1dB				垂直方向	的偏移 0.00V	0	direct	144m		
总谨	波失真	信噪比							1	1.000k	135m	-1.58	1
									2	3.000k	44.6m	-1.59	频举表
				455 146 1771					3	5.000k	26.6m	-1.59	
				频谱图					4	7.000k	19.0m	-1.59	
									5	9.000k	14.7m	-1.59	
	-25.00 -20	0.00 -15.00	-10.00 -5	000.0 000	5.000	10.00	15.00	/KHz 25.00	6	11.00k	12.0m	-1.59	
						20100		,					
-/~®	1 100	mV/div 2	Closed	3 Closed	1 4	Closed				S	top 1 🚍 Auto	5.00 m	s/ View V 0.00s
Ľ,		146mV								T	146mV	1.40s	56.0Mpts
	1:1 1MO									E	Edge 🔟	Norm	40.0MHz

图 19.3 FFT 运算界面

表 19.1	FFT 运算界面描述
--------	------------

名称	说明					
FFT 采样点数	用于计算 FFT 的点的数量					
频谱分辨率	示波器最小能分辨的频率,即两个相邻频点之间的频率间隔					
FFT 采样率	每秒采集的点的数量					
台逃油生吉 (THD)	指所有谐波成分功率与基本频率信号功率的比值。能分析出当前信号中 50次					
芯咱砍大兵(InD)	以下的谐波成分,并计算谐波的含量,该值越小代表信号谐波干扰越小					
/ / / に H ↓ (CND)	指基本频率信号功率与其它频率信号功率的比值。能分析出当前信号中的噪声					
信噪比(SINK)	能量,该值越大代表信号的噪声干扰越小					
FFT 频谱图	对输入信号进行快速傅立叶变换后得到的频谱图					
垂直方向幅值档位	用于计算 FFT 频谱图垂直方向的幅值档位,其与时域图的垂直灵敏度相对应					
垂直方向的偏移	用于计算 FFT 频谱图垂直方向的频谱偏移量					
CCT 杨玄丰	频谱图对应的频率表,可通过旋转旋钮 B 查看每一个频率点的分析结果,短按					
FF1 频平农	旋钮 B 可快速将该频率点定位到中心频率点处					
频率表的频率值	以能量依次减小的顺序,列出能量前 20 大的频率值					
频率表中有效值	以能量依次减小的顺序,列出能量前 20 大的功率值					
频率表中相位	以能量依次减小的顺序,列出能量前 20 大的相位值					

19.4 信源选择

【信源选择】选择须执行 FFT 运算的通道,用户可选择 CH1、CH2、CH3 或 CH4。

19.5 窗函数

使用窗函数可以有效的减小频谱的泄露,默认的为"矩形窗",选择窗函数如图 19.4 所示。

图 19.4 窗函数选择

FFT 分析研究的是从信号开始到结束时的时域与频域的关系,当用示波器对信号进行 FFT 分析时,当前屏幕只会显现一段信号波形,由于截取周期可能具有不完整性,则首尾波 形能量会分散到整个频谱范围内,不同的窗函数对这种能量的分散抑制能力是不同的(但不 能消除),用户可根据自己的需求来选择合适的窗函数。

窗函数包括4种模式,对可选择的窗函数说明如下表 19.2。

FFT 窗函数	特点	使用场合
Rectangle (矩形窗)	矩形窗属于时间变量的零次幂窗。 优点:主瓣比较集中 缺点:旁瓣较高,并有负旁瓣,导致变 换中带进了高频干扰和泄露,甚至出现 负谱现象	 > 适合应用于对频率分辨率要求较高的场合; > 暂态或短脉冲,信号电平在此前后大致相等; > 频率非常相近的等副正弦波; > 具有波普变化比较缓慢的宽带噪声。
Hanning (汉宁窗)	又称升余弦窗。 优点:主瓣加宽并降低,旁瓣则显著减 小,减小泄露 缺点:分析带宽加宽,频率分辨率下降	 适合应用于分析窄宽信号,且有较强的干扰噪声的信号; 正弦、周期和窄带随机噪声。 被测信号有多个频率分量,频谱表现很复杂, 且多关注频率点而非能量的大小
Hamming (海明窗)	改进的升余弦窗。 优点:第一旁瓣衰减比汉宁窗大 缺点:旁瓣衰减速度慢	 适合应用于区分主瓣、第一旁瓣幅值。 暂态或短脉冲,信号电平在此前后相差很大。
Blackman (布莱克 曼窗)	优点:幅度衰减在以上窗中是最出色的 缺点:主瓣最宽,即分辨率最差	▶ 适合应用于单频信号,寻找更高此谐波。

表 19.2 FFT 窗函数特点介绍

注: 窗函数计算公式如下

矩形窗: w(n) = 1;

海明窗: w(n) = $0.53836 - 0.46164 \cos(2\pi n/(N-1));$

汉宁窗: w(n) = $0.5(1 - \cos(2\pi n/(N-1)));$

布莱克曼窗: w(n) = $0.42 - 0.5 \cos(2\pi n(N-1)) + 0.08 \cos(4\pi n/(N-1));$

其中:n表示当前点数,N表示总采集点数。

19.6 显示模式

FFT 频谱图的显示模式如下所述:

- dBm: 以分贝毫瓦方式显示 FFT 结果,计算方式 dBm = 20 log (Vrms / Vref),其中, Vrms 为电压有效值, Vref 为参考电压, Vref = sqrt (1mW × 50Ω);
- Vrms: 显示电压有效值,即均方根值;
- Ampl:显示 FFT 的真实幅值,一个周期内信号的最大绝对值,且 Vrms= Ampl/根 号 2;
- PSD:显示功率谱密度。

19.7 单次运算

示波器在运行模式,且选择 FFT 模式后,将开始执行 FFT 的自动运算,最大执行点数为 100K,当用户按下【Run/Stop】在停止过程将进行一次 FFT 运算,最大运算点数为 4M,但停止后示波器将不会再进行自动运算。

进入停止模式后,若用户改变波形的时基或者偏移需再次进行 FFT 运算,此时可按下 【单次运算】软键,示波器会马上执行一次 FFT 运算,如图 19.5 所示。

图 19.5 单次运算

19.8 频谱图水平调节

在如图 19.6 所示中,通过旋转旋钮 A 可调节水平方向频谱图的频率档位,控制频谱图的缩放,旋转旋钮 B 可调节水平方向频谱图的偏移,控制着频谱图的左右移动。 点击【重置】按钮可使频谱图的水平档位和水平偏移复位。

图 19.6 水平调节

19.9 具体实例应用步骤

 在通道1接入有谐波混杂的正弦信号,如图 19.7 所示,点击【Auto Setup】一键捕获 波形,如下图 19.8,此时可以很明显的观察到信号中存在干扰谐波,此时可利用 FFT 计算整个信号的频率,分析出干扰谐波的频率值;

1 🖂

Auto 0.00V 140ms

200 div

1 ION

3、点击"多功能控制区"中的【FFT】进入FFT分析界面,配置【通道源】、【窗函数】、 【显示设置】后,在停止状态【Stop】下进行计算,结果如下图 19.9所示;从图中可 以看到除了直流分量和第一次谐波,分析出频率为70KHz的干扰谐波,可从表中分析 出波形中所掺杂的谐波信号和其对应的dBm值等信息,方便对信号进行异常分析和异 常滤除。

图 19.8 数学运算界面

2、点击【Acquire】,点击菜单右侧软键【储存深度】,旋转旋钮 A 选择 14Mpts (即尽可能大些,分析更多有效数据),短按旋钮 A 即可确认选择,调节水平时基档位至

4

1.00V/div 2

-1.86

10ms/div~50ms/div 左右均可;

图 19.9 FFT 分析结果

19.10 FFT 频谱表操作

FFT 频谱表的操作是通过旋钮 B 进行的。旋转旋钮 B 可选择频谱表里的频率点,被浏览的频率点变为灰色底纹,此时短按旋钮 B 则可选中该频率点,同时 FFT 频谱图定位至选中浏览事件的频率点,此时中心频率点即为 FFT 频谱表里选中的频率点详见图 19.10。

图 19.10 FFT 频谱表操作

19.11 相关公式

FFT 运算相关的公式说明如表 19.3 所示。

表 19.3 FFT 相关公式

计算项	公式	说明
dBm	$dBm = 20\log(Vrms / Vref)$	分贝毫瓦,其中 Vref=sqrt(1mW×50Ω),下同
PSD	$PSD = 10 \log(Vrms / Vref \times \Delta f)$	功率谱密度, Δf 为频谱分辨率
THD	$THD = \sqrt{\sum_{i=2}^{50} \frac{V_i^2}{V_1^2}}$	示波器将当前频谱中除直流分量外值最大的频点 认为是基波,公式中 V ₁ 为基波有效值,V _i 为谐波 有效值
SNR	$SNR = 10 \lg(\frac{P_1}{P_{total} - \sum_{i=1}^{6} P_i})$	示波器将当前频谱中除直流分量外值最大的频点 认为是信号,公式中 P ₁ 为信号功率,P _i 为谐波功率, 去除了前6次谐波功率

75 致远电子

20. 分段存储

20.1 概述

分段存储在采集过程中进行多次触发时,对每次触发采样得到的数据存放到各段的存储 空间中。

20.2 分段存储原理

如下图 20.1 所示,总的存储深度分为n段,第1段用于显示,第2段开始存储,也就 是当发生第一次触发时采集的数据存储到第2段存储空间中,当第2段存储空间存储满之后, 结束第一次触发,等待第二次触发的到来,触发后把数据存储到第3段存储空间中,以此类 推。

图 20.1 分段存储结构图

ZDS4054lus 示波器为例,总的存储深度为 512Mpts,段数分配计算公式如下: N=512*1024*1024/【当前存储容量向 2^n 次幂取整】-1。

20.3 分段设置

ZDS4054Plus 示波器最大存储为 512Mpts,在保持 4GSa/s 采样率的情况下,支持分段存储范围: 1~524287 段。

点击【Seg】,通过调节时基档位,在560Kpts存储深度的状态下,将分成255段进行存储和采 集,如下图 20.2:

									▶ 分段:		0/255	分段	模式
													总段数
													当前段
т													
1.													
ZO	оM	Measure	Search										
S	a	Math	FFT										
5.	-y												
Fil	ter	Decode	Trigger										
_													
7/~®	1	1.00V/div	Closed	3	Closed	4	Closed			Wait	1 🖬 Normal	10.0 us/ div	Y-T 0.00s
23	1:1 1MO	0.00∨		-:-		-:-				T Edge	0.00V	140us Norm 4.	560Kpts 00GSa/s

图 20.2 分段存储设置

设置触发方式为【普通】,将触发电平调到合适的位置,等待小概率异常信号到来。

图 20.3 触发方式设置

通过**手指触碰探头**,可模拟小概率异常信号的发生,等分段存储完成,点击【Stop】, 点击【当前段】可通过旋转旋钮A/B查看所有分段存储情况,如图 20.4为第45段存储的波形。

						—						
								■ 分段	ž:	45/255	分開	设模式
							\sim					总段数 255
											(A) (B)	当前段 45
1 → 1 ₌ >												
		:										
ZOON	/ Measure	Search										
Seg	Math	FFT										
Filter	Decode	Trigger										
Z 4 G [®] <mark>1</mark>	1.00V/div 2 0.00V	Closed	3	Closed 	4 Cl				S T E	lop 1 🖬 Normal 900mV	10.0 di 140us Norm	View 0.00s 560Kpts 4.00GSa/s

图 20.4 分段存储结果

20.4 实例应用: 8 小时振荡检测试验

以 ZDS4054Plus 示波器测试做振动试验的连接器为例,测试整个过程中,监测连接器可能出现次失效区的次数,进而检测产品是否合格。

测试需求:

整个振动试验时长 8 个小时,在整个过程中连接器可能会出现 0~几十次失效区,时长 是 300ns 以上,幅值大小不确定(正常情况下电平为 1V)。

测试难点:

1、震动试验时长8小时,示波器基于大时基录波难以实现,并且采样率也不够;

2、振动实验室噪声干扰较大,失效时的尖峰波形和杂波混杂在一起,不易测试失效区信号。

图 20.5 测试波形

针对上述测试难题,ZDS4054Plus 示波器的分段存储功能提供了良好的解决方案。

首先,根据异常信号的特征,设置好示波器捕获触发条件(包括触发电平、触发方式、时基、分段存储,分段段数等),进行 8 个小时的振动试验监测,捕获异常情况如下图 20.6:

图 20.6 异常捕获

图 20.7 分段存储

如上图 20.7 所示,在长达 8 个小时的测试周期中,共捕获了 106 段异常波形,上图为 第 9 段和第 13 段的失效区异常情况及信号特征,当前采样率仍为 4GSa/s。

21. 参考波形

21.1 概述

用户可将模拟通道波形保存到示波器中的参考波形位置然后与其它波形进行比较,从而 判断故障原因。

按下前面板上参考波形功能键,弹出参考波形设置菜单如图 21.1 所示。

图 21.1 参考波形界面

ZDS3000/4000 系列示波器可提供 5 个参考波形通道。启用参考波形功能后,用户可执行如下操作:

- 设置参考通道的信号源;
- 设置参考波形的垂直档位和位移;
- 保存参考波形到内部或外部存储,内部存储提供 16Mpts 的存储深度;
- 调出参考波形显示。

此外,用户可将参考波形保存到内部或外部存储器波形文件,或从波形文件导出保存的 参考波形进行显示。

注:时基为 X-Y 模式时,不能启用参考波形功能。

图 21.2 五条参考波形同时显示

21.2 选择当前通道

用户如果需要对某一参考波形通道进行操作,可设置该参考波形为当前通道。在参考波 形设置菜单里,按下【当前通道】软键,选择需调节的通道,如图 21.3 所示。

REF1 REF2	•	当前通道
REF3		REF1
REF5		信源选择

图 21.3 当前通道

21.3 选择信源

选择当前通道之后,用户可选择 CH1、CH2、CH3 和 CH4 通道作为当前通道的信号源。在如图 21.1 所示的参考波形设置菜单里,按下【信源选择】软键,选择需设置参考波形的 信号源,如图 21.4 所示。

图 21.4 信源选择通道

21.4 暂存波形/清除波形

在如图 21.1 所示的参考波形设置菜单里,按下【暂存波形】软键则"信源选择"通道的波形被保存,并作为当前通道参考波形显示,如图 21.5 所示;按下【清除波形】软键,则清除当前参考波形的显示和当前暂存的参考波形。

图 21.5 参考波形显示与对比

21.5 垂直档位/偏移

旋转旋钮 A 可调节参考波形的垂直档位,旋转旋钮 B 可调节参考波形的垂直偏移,如下图 21.6 所示。

图 21.6 垂直调节

21.6 参考波形文件的导出/导入

1. 导出文件

用户可将当前参考波形的波形数据,水平和垂直缩放档位、水平和垂直偏移、探头衰减 比等测量设置信息保存至内部 Flash 存储器或外部 U 盘。参考波形文件的文件名格式为 "*.ref"。如图 21.7 所示,按下"导出文件"软键,进入文件保存界面。

图 21.7 导出文件

2. 导入文件

用户还可将仪器内部 Flash 存储器或外部 U 盘中存储的参考波形文件导入,显示保存的参考波形。在参考波形的下页菜单中按下【导入文件】软键,进入文件导入界面,如图 21.8 所示。

	导入
(B) 通过旋钮B进行选择操作,按下进入相应路径。	
/Flash	
 ● 本地闪存 ● 新建文件夹0 ● 新建文件0.ref 	人 得

图 21.8 导入参考波形文件

▲ 致远电子

22. 存储与导入

22.1 概述

用户可将当前示波器的设置、波形、屏幕图像以多种格式保存到内部存储器或外部 USB 存储设备,可存储的文件大小仅受内部存储器或外部 USB 存储设备的容量限制,并且用户可在需要时导入这些文件。另外,示波器更有创新的 ScopeReport[™]功能,可对所有协议解码分析和 FFT 分析"打包",自动生成 html 或 CSV 格式的报告。

22.2 存储

用户按下前面板如图 22.1 所示的【Save/Recall】键,打开存储/导入菜单。

图 22.1 存储菜单

22.2.1 存储类型

点击【存储类型】选择所要存储的文件格式,ZDS3000/4000 系列示波器支持的存储格 式包括:设置文件、二进制数据、CSV 数据、BMP/JPG/PNG/灰度图像,如下图 22.2 所示。

存储类型	存储
设置文件	◆ 存储类型
二进制文件	PNG图像
CSV	▼ 存储路径
BMP图像	/udisk/111
JPG图像	▼ 存储文件名
PNG图像	dso_43
灰度图像	图像反色 OFF
	保存文件

图 22.2 存储文件类型

各种存储格式的存储信息和导入简单说明如表 22.1 所示。其中, BMP/JPG/PNG/灰度 (BMP)存储都是常见的存储格式,这里不再详细介绍,仅分别对设置文件、二进制数据、 CSV 数据进行说明。

存储格式	保存信息	保存方式	导入说明	
设置文件	示波器的 设置信息	以"*.stp"格式存至内部或外部存储	可导入/导出 任意示波器 设置	
二进制数据	选中通道的二进 制一维原始数据	以"*.wfm"格式存至内部和外部存储器	不支持导入	
CGV 粉坭	屏幕显示或指定	以单个"*.csv"格式文件存至内部或外部	太 士持巳)	
しい数据	通道的波形数据	存储器,可指定文件名和保存的路径	小又雨可八	
DMD 团使	屋貫図偽	屏幕图像以"*.bmp"格式存至内部或外	不古特号)	
DIVIF 舀隊	开带凹逐	部存储器中,可指定文件名和保存的路径		
IDC 团佈	豆茸肉梅	屏幕图像以"*.jpg"格式存至内部或外部	不士持已)	
JPG 图像	所希엄隊	存储器中,可指定文件名和保存的路径		
DNC团体	豆茸肉梅	屏幕图像以"*.png"格式存至内部或外部	不士持已)	
PNG 图像	所希엄隊	伊希 [3] 译 存储器中,可指定文件名和保存的路径		
左 庙 团 桷	仅保存屏幕图像	屏幕图像以"*.bmp"格式存至内部或外	ブナは日)	
灰度图像	的灰度信息	个又持守八		

表 22.1 存储格式与导入

● 设置文件

设置文件的扩展名为.stp,存储示波器的系统设置。用户可将示波器的设置导出到存储器,或者从存储器导入到示波器。

● 二进制数据

二进制数据的扩展名为.wfm, 主要用于存储选中存储通道的二进制一维原始数据, 其格式如图 22.3 所示。

一维原始数据(N×8bit)

图 22.3 一维原始数据

如图 22.3 所示,一维原始数据的基本单位 "8bit"指示 ZDS3000/4000 系列示波器的 ADC 是 8 位的,每个采样点占用 1 个字节。其中,一维原始数据中 N 的具体大小与示波器 设置的存储深度、捕获模式、时基档位及存储中设置的数据长度(屏幕/内存)有关。

● CSV 数据

CSV 数据也即 Comma Separated Values,是一种逗号分隔值文件格式,其文件以纯文本 形式存储表格数据。ZDS3000/4000 系列示波器的 CSV 数据文件里,包含设备信息、水平档 位、水平偏移、采样率、触发模式、通道源以及通道的相关信息等。

22.2.2 存储路径选择

用户在存储路径里选择须管理的磁盘,旋转旋钮 B 可以选择相应的磁盘,短按旋钮 B 可进入磁盘内部,在此旋转旋钮 B 选择所需存储的文件夹,之后即可在磁盘内进行文件夹 新建/删除/重命名等操作,如图 22.4 所示。

存储				
存储类型 PNG图像				磁盘浏览
▼ 存储路径	。通过旋钮B进	行选择操作按下进入相	应路径	✓ 文件类型 PNG图像
/udisk ▼ 存储文件名	/udisk/111 本地闪存 Flash	Î ∱ T		新建文件夹
dso_2	↔ USB USB存储	□□ ■新建文件夹1 ■ dso_1.png	2016-08-03 14:13 2016-08-01 15:05	•
图像反色 OFF		dso_2.png dso_3.png	2016-08-01 17:11 2016-08-01 17:11 2016-08-01 17:11	删除
保存文件		dso_4.png dso_5.png dso_6.png	2016-08-01 17:11 2016-08-01 17:11 2016-08-01 17:15	粘贴
		dso_7.png dso_8.png	2016-08-01 17:15 2016-08-03 10:07	
 适回 		dso_9.png	2016-08-03 10:07	

图 22.4 进入本地闪存

(1) 新建文件夹

进入如图 22.4 所示的文件列表界面后,用户若想新建一个文件夹可按下【新建文件夹】, 并设置新文件夹的名称,如图 22.5 所示。新文件夹的名称可以由 0~9 和英文字符和"."、"_" 任意组合而成。具体如下操作:

图 22.5 新建文件夹操作说明

- ▶ 旋转旋钮 B 可以选中面板上的数字或字符作为新建文件夹名,短按旋钮 B 即可确认选择;
- ▶ 若想删除某个字符可以旋转旋钮 B 至退格删除键,短按旋钮 B 即可删除完成;
- > 若想删除所有输入,可点击【重置】将所有输入删除,此时可重新输入文件名。
- ▶ 输入完成点击【确认输入】即可完成并返回存储路径界面,此时旋转旋钮 B 选 中所建立的文件夹,点击【返回】即可完成路径选择。
- (2) 删除文件/文件夹

用户可删除外部或内部磁盘的指定文件或文件夹,操作步骤见图 22.6。

存储		磁盘浏览
	18,通过旋钮B进行选择操作, /Flash	进入相应路径。
▼ 存储路径 /Flash	● 本地闪存 ● 新建文件表 ■ 新建文件表 ■ dso_4.png	新建文件夹
▽存储文件名	dso_1.png dso_2.png dso_3.png	确认删除文件夹 新建文件夹0? 删除
dso_10		2 · · · · · · · · · · · · · · · · · · ·

图 22.6 删除文件/文件夹

此外,用户可一次性删除内部磁盘的所有文件,首先选中内部磁盘,然后再执行【删除】 功能,如图 22.7 所示。

				-04/7				ã	鐵盘浏览
	19, 通过旋钮62	171边牢操作,1	安卜进入相应	山府住。					文件类型 所有文件
选中本地闪存	● 本地闪存								
				确认册	別除本地码	送盘所有文件 	⊧?		删除
				Ϋ́Α,	确定	取消			

图 22.7 删除本地闪存的所有文件

(3) 复制和粘贴文件

用户可将内部存储器中的文件复制,再粘贴至外部存储器的指定路径,步骤如下所述。

复制文件

首先进入须复制文件所在的路径,然后复制指定的文件,如图 22.8 所示。

图 22.8 进入复制文件所在的路径

(2) 粘贴文件

完成复制后,即可将复制内容从内部存储器粘贴至外部存储器,如图 22.9 所示。注意, 文件只能粘贴至外部存储器。

6									磁盘浏览
· <u>B</u> ,通过的 /udisk	淀钮B 进	行选择操	作,按下	进入相应	四路径。				文件类型
🖸 本地	习存〔	<u>t.</u>							PNG图像
↔ 外部	存储	新建3 dso_1	文件夹0 L.png	_	201	4-07-10) 13:33		新建义14天
		dso_2 dso_3 dso_4 dso_4	2.png 3.png 4.png 5.png		201 201 201 201	.4-07-10 .4-07-10 .4-07-10 .4-07-10) 13:34) 13:35) 13:36) 13:36		删 除
		 ☐ dso_€	5.png		201	4-07-10) 13:37		粘贴文件
	使用	储辞 田 居 操	作对话框	按下讲	: λ হা π Σ	7件本			
	192712	JAC 110 JAC		1 22					

图 22.9 粘贴文件操作示意

22.2.3 存储文件名

确定好文件存储路径后,用户按下"存储文件名"软键,弹出文件名输入界面,如图 22.10 所示。文件名可以由 0~9 和英文字符和"."、"_"任意组合而成。

存储		输入
4 存储类型 PNG图像	④ 通过旋钮B进行键盘操作,按下旋钮确定。	 √ 命名方式 輸入文件名
▼ 存储路径 /Flash	名称: d s o _ 类型: png	名称光标
▽ 存储文件名 dso_1	q w e r t y u i o p	自动增加 OFF
图像反色 OFF	asdfghjkl ☆zxcvbnm.←	确认输入
保存文件	使用旋钮B操作中间对话框,按下选中	

图 22.10 自定义命名操作

命名方式

如图 16.6 所示,【命名方式】可选择"输入文件名"或"以时间命名"。在"输入文件名"命名方式下,用户输入文件名; 旋转旋钮 B 可以选中相应的字符或数字,短按旋钮 B 可确认选择。点击【确认输入】即可完成命名。

在"以时间命名"命名方式下,示波器自动按"年月日-时 分秒"的格式,用系统时间为文件命名,例如:"20141230_111830"。

图 22.11 自定义命名操作

移动名称光标

按下"名称光标"后,用户可使用旋钮 A 控制文件名输入对话框里的光标,如图 22.5 所示。旋钮 B 用于选择键盘字符。

164 >> 产品用户手册 |-

自动增加

自动增加是指以用户定义的文件名为基准,在文件名后增加一个后缀: "_索引号"; 每保存一次文件,则后缀里的索引号增加1,文件名后缀自动增加的一个范例如图22.12 所示。

	磁盘浏览
(9)通过旋钮B进行选择操作,按下进入相应路径。 /Flash	↓ 文件类型 PNG图像
 ● 本地闪存 ● 新建文件夹0 ● 20140814_101916.png ● doo 1 ppg 	新建文件夹
dso_1.png dso_2.png dso_3.png dso_4.png	删除
dso_5.png 20140812_114501.png	复制文件

图 22.12 自动增加命名示例

22.2.4 保存文件

在按下"保存文件"软键之前,须确定存储类型、存储路径、存储文件名或其它存储参数,不同的存储类型,则保存文件的菜单也有所不同,存储参数也不同。执行文件保存操作。 注: 当执行文件保存操作时,示波器上除电源键以外的所有按键均无效。

当选择图像反色为 ON 时,保存图像的 RGB 颜色编码会按位取反后再保存,图像反色示例如图 22.14 所示,图像反色参数设置如图 22.15 所示。

图 22.13 图像反相为 "OFF"

图 22.14 图像反色为"ON"

图 22.15 图像反色参数

22.3 一键存储

用户可按下【Print Screen】键,将当前的屏幕显示以JPG、PNG、BMP、灰度格式保存 到指定存储路径。一键存储的设置在"存储/导入"菜单完成,若提前设置好保存的格式, 路径等,一键存储的文件将按照所设置的参数进行保存。若不指定存储格式,则按下【Print Screen】键后,默认以 PNG 格式保存屏幕显示。

图 22.16 一键存储按键

22.4 报表生成

通过 ScopeReport[™]功能,可对所有协议与 FFT 分析结果"打包",自动生成 html 或 CSV 格式的报告供用户浏览。

22.4.1 解码事件表报表导出

用户可在协议解码功能里将解码分析的结果导出报表。当协议解码处于运行状态时,按下【Run/Stop】键令示波器进入停止状态,此时出现【事件导出】软键,按下【事件导出】 软键,并选择"报表网页",执行导出报表功能,如图 22.17 所示。保存报表之前,可设置 报表的保存路径和文件名,如图 22.17 所示。

解 码				
▲ 解码类型				
UART				
协议触发				
ON			选择"报表网页"生成报表	長文件
↓ 协议参数	(磁盘浏览
:8 波特率:9600 :	1. B ,通过旋钳B	进行选择操作,按卜进入相应路径。	所有文件	
解码设置	/udisk		CSV存储	报表网页
	 本地闪存 分 外部存储 	E	报表网贝	保存文件
事件表		新建文件夹0		
ON				新建文件夹
事件导出				
~ ->				删除

图 22.17 解码事件表的报表文件导出

75 致远电子

图 22.18 设置存储路径和存储文件名

生成的一个报表文件实例如图 22.19 所示。

ZLG	ZDS3024 Plus	Date : 2010	6-10-31 T	`ime : 09:04	4:00 Type	: Decoder	ZłG
			Scop	eRepo	rt		
							解码
т→							触发使前 O
CAN	H H H -{} BaseID:0×020(⊢┤ ┝─ ⊇╲╲═╲╲ _{⊙∞3}	+ +=- + X5AX	לי ייייי לי 0×4C \D	ط الجني (<u>محمد المحمد /u>	┙┝┙┝┙┝┙┝┙┝ RC:0×34A4 \\\\	4 协议参数 X 信源选择:CH1
							解码设计
DEC₽	Index	i i					解码线位于
•) →	1 -324.35 2 -272.12 3 -251.28	i6ms DAT 5ms DAT 6ms DAT	A 0200 A 0200 A 0200 A 0200	03 5/ 03 5/ 03 5/	A 4C 47 A 4C 47 A 4C 47 A 4C 47	34A 34A 34A	2 2 2 2 0
DA	5 -135.30 6 -83.076 TA: 5A 4C 47	7ms DAT 0ms DAT	A 0200 A 0200 A 0200	03 54 03 54	4C 47 A 4C 47 A 4C 47	34A 34A	2 事件导t 6 、
Z £G[®] ¹ ™Ω	500mV/div 2 (-1.83V	Closed 3 C	Closed 4	Closed 		Stop 1 E Normal T 2.53V CAN	10.0 us/ Vie 64.6u 700ms 70.0Mpt Norm 100MSa/
Index	Time	Туре	ID	DLC	DATA		CRC
1	-324.356ms	DATA	0200	03	5A 4C 47		34A4
2	-272.125ms	DATA	0200	03	5A 4C 47		34A4
3	-251.286ms	DATA	0200	03	5A 4C 47		34A4
4	-189.039ms	DATA	0200	03	5A 4C 47		34A4
5	-135.307ms	DATA	0200	03	5A 4C 47		34A4
6	-83.0760ms	DATA	0200	03	5A 4C 47		34A4
7	-62.2455ms	DATA	0200	03	5A 4C 47		34A4
8	10. 0000ns	DATA	0200	03	5A 4C 47		34A4
9	53.7273ms	DATA	0200	03	5A 4C 47		34A4
10	105.959ms	DATA	0200	03	5A 4C 47		34A4
11	126.805ms	DATA	0200	03	5A 4C 47		34A4
12	189.057ms	DATA	0200	03	5A 4C 47		34A4
13	242. 786ms	DATA	0200	03	5A 4C 47		34A4
14	295.017ms	DATA	0200	03	5A 4C 47		34A4
15	315.832ms	DATA	0200	03	5A 4C 47		34A4

图 22.19 解码事件表报表实例

22.4.2 FFT 运算结果报表导出

用户可通过 FFT 报表导出功能,将 FFT 运算结果作为报表文件保存到内部和外部磁盘, 图 22.20 所示是一个 FFT 报表文件的部分内容。FFT 报表输出功能仅在示波器处于停止模 式时可用。FFT 报表功能菜单如图 22.21 所示,用户可在内部或外部磁盘里管理 FFT 报表 文件。

ZLG 2	ZDS3024 Plus	Date : 2016-10-31	Time: 09:06:25 Typ	be:FFT ZG
		S	copeReport	
T → 1.+				FFT
				714kHz/div 3.57MHz
N=4.00 THD=2	0M -f=3.57Hz Sa=1 17.6% SNR=7.352dB	4.3MSa/s	50.0dBm/div 19 -100dBm 1 2 3	 ・ 預差/Hz 切差/dBm direct 13.9 1.064M 15.7 3.191M 4.13 6.079M 3.07 3.951M 2.28 号出报表 1.824M 742m 203.94 - 1.60
0.000	0.714 1.429 2.	143 2.857 3.571	4.286 5.000 5.714 /MHz 7.143	Stop 1 = 2 00 45/ View
	-1.58V			Auto 2.00 div 0.00s T 1.58V 280ms 140Mpts Edge Norm 500MSa/s
		频率/Hz	功率/dBm	相位/r
0		频率/Hz direct	功率/dBm 13.9	相位/r
0		频率/Hz direct 1.064M	功率/dBm 13.9 15.7	相位/r -3.03
0		频率/Hz direct 1.064M 3.191M	功率/dBm 13.9 15.7 4.13	相位/r -3.03 0.34
0 1 2 3		频率/Hz direct 1.064M 3.191M 6.079M	功率/dBm 13.9 15.7 4.13 3.07	相位/r -3.03 0.34 -1.69
0 1 2 3 4		频率/Hz direct 1.064M 3.191M 6.079M 3.951M	功率/dBm 13.9 15.7 4.13 3.07 2.28	相位/r -3.03 0.34 -1.69 1.22
0 1 2 3 4 5		频率/Hz direct 1.064M 3.191M 6.079M 3.951M 1.824M	功率/dBm 13.9 15.7 4.13 3.07 2.28 742m	相位/r -3.03 0.34 -1.69 1.22 -2.16
0 1 2 3 4 5 6		频率/Hz direct 1.064M 3.191M 6.079M 3.951M 1.824M 303.9k	功率/dBm 13.9 15.7 4.13 3.07 2.28 742m -1.60	相位/r -3.03 0.34 -1.69 1.22 -2.16 -0.74
0 1 2 3 4 5 6 7		频率/Hz direct 1.064M 3.191M 6.079M 3.951M 1.824M 303.9k 2.432M	功率/dBm 13.9 15.7 4.13 3.07 2.28 742m -1.60 -5.13	相位/r -3.03 0.34 -1.69 1.22 -2.16 -0.74 2.65
0 1 2 3 4 5 6 7 7 8		频率/Hz direct 1.064M 3.191M 6.079M 3.951M 1.824M 303.9k 2.432M 5.319M	功率/dBm 13.9 15.7 4.13 3.07 2.28 742m -1.60 -5.13 -5.86	相位/r -3.03 0.34 -1.69 1.22 -2.16 -0.74 2.65 -2.56
0 1 2 3 4 5 6 7 7 8 8 9		频率/Hz direct 1.064M 3.191M 6.079M 3.951M 1.824M 3003.9k 2.432M 5.319M 2.584M	功率/dBm 13.9 15.7 4.13 3.07 2.28 742m -1.60 -5.13 -5.86 -8.20	相位/r -3.03 0.34 -1.69 1.22 -2.16 -0.74 2.65 -2.56 1.80
0 1 2 3 4 5 6 7 7 8 8 9 10		频率/Hz direct 1.064M 3.191M 6.079M 3.951M 1.824M 303.9k 2.432M 5.319M 2.584M 456.0k	功率/dBm 13.9 15.7 4.13 3.07 2.28 742m -1.60 -5.13 -5.86 -8.20 -8.28	相位/r -3.03 0.34 -1.69 1.22 -2.16 -0.74 2.65 -2.56 1.80 -1.60
0 1 2 3 4 5 6 6 7 7 8 8 9 10 11		频率/Hz direct 1.064M 3.191M 6.079M 3.951M 1.824M 3003.9k 2.432M 5.319M 2.584M 456.0k 1.672M 4.556M	功率/dBm 13.9 15.7 4.13 3.07 2.28 742m -1.60 -5.13 -5.86 -8.20 -8.28 -10.1	相位/r
0 1 2 3 4 5 6 7 7 8 9 9 10 11 11 12 13		频率/Hz direct 1.064M 3.191M 6.079M 3.951M 1.824M 303.9k 2.432M 5.319M 2.584M 456.0k 1.672M 4.559M 4.711M	功率/dBm 13.9 15.7 4.13 3.07 2.28 742m -1.60 -5.13 -5.86 -8.20 -8.28 -10.1 -10.7	相位/r
0 1 2 3 4 5 6 7 7 8 8 9 9 10 10 11 11 12 13 14		频率/Hz direct 1.064M 3.191M 6.079M 3.951M 1.824M 303.9k 2.432M 5.319M 2.584M 456.0k 1.672M 4.559M 4.711M 1.216M	功準/dBm 13.9 15.7 4.13 3.07 2.28 742m -1.60 -5.13 -5.86 -8.20 -8.28 -10.1 -10.7 -11.0	相位/r -3.03 0.34 -1.69 1.22 -2.16 -0.74 2.65 -2.56 1.80 -1.27 -1.27 -0.23 -1.08

图 22.20 FFT 报表

-14. 2

-14.9

1.13

-0.58

911. 8k

3.344M

导出报表

16

17

首先,需要令示波器进入停止状态,然后选择**导出报表**,并且选择需要在磁盘浏览视图 里显示的文件类型,用户可选择只显示网页文件也可显示所有文件,如图 22.21 所示。

图 22.21 FFT 报表导出功能

然后使用旋钮 B 在磁盘浏览对话框里选择保存文件的路径,用户也可在指定路径里新建文件夹用于存储 FFT 报表,设置完毕后可点击【保存文件】进入文件名设置界面,如下所述。

保存文件名

接下来,需要确定保存文件的名称。按下图 22.22 所示的"保存文件"软键,选择命名 方式,用户可以选择"输入文件名"也可选择"以时间命名"。若选择"输入文件名",则文 件名由用户直接输入,光标由旋钮 A 和旋钮 B 一起控制,如图 22.22 所示。若选择"以时 间命名",则由系统自动按"年月日_时分秒.html"的命名格式命名,如图 22.23 所示。

图 22.22 输入文件名

以系统时间自动命名的报表文件

图 22.23 以系统时间自动命名的报表文件

最后,按下图 22.22 所示的【确认输入】软键,确认保存文件名,然后在图 22.23 所示 菜单里按下【保存文件】软键,即执行文件保存操作,此时系统会显示文件保存进度条直至 保存完成。当文件保存时,除电源键以外的所有按键均无效。

22.5 导入

只有设置文件和二进制数据类型的波形文件可导入,如表 22.1 所示。在如图 22.1 所示 菜单里,按下【导入"软键,可导入内部存储器或外部存储器的存储文件,如图 22.24 所示。

图 22.24 导入存储文件

23. 系统辅助设置

23.1 概述

用户按下前面板上的系统功能设置键,可进入系统设置菜单,如图 23.1 所示。

Math	Decode
FFT	Ref
Save Recall	Digital
Utility	Analyze

图 23.1 系统设置菜单

23.2 LAN 设置

按下前面板上【Utility】按键,选择【网络设置】,进入 LAN 信息设置对话框,如图 23.2 所示。用户可查看网络连接状态和配置网络参数,旋转旋钮 B 可移动光标位置,短按旋钮 B 后可修改当前值。

图 23.2 LAN 设置

IP 地址配置类型可以是 DHCP、静态 IP。不同 IP 地址配置类型, IP 地址等网络参数的 配置方式不同。

DHCP 模式

在图 23.2 所示【模式】菜单里选择"DHCP"。DHCP 类型有效时,将由当前网络中的 DHCP 服务器向示波器分配 IP 地址等网络参数。设置完毕后,按下菜单里的【应用】软键, 即可令当前设置生效,如图 17.3 所示。

静态 IP 模式

在如图 23.2 所示【模式】菜单里选择"静态 IP";则用户可自定义示波器的 IP 地址、 网关、DNS 等网络参数,然后保存到至非易失性存储器里;最后,按下菜单里【应用】软 键,即可令当前设置生效,如图 23.3 所示。

图 23.3 两种网络设置模式

23.3 语言

用户可在如图 23.1 所示系统设置菜单里,选择菜单和提示信息的语言。当前可选择的语言有简体中文和 English。

23.4 触摸屏

ZDS3000/4000 系列示波器显示屏为9 英寸的彩色触摸显示屏,示波器的所有操作均可 在触摸屏上进行操作,省去了按键操作的麻烦和旋钮操作的不便,如图 23.4 所示点击屏幕 下方的面板组件,将出现对应的菜单,也可对波形进行扩展和缩放处理,类似于智能手机的 操作。

图 23.4 触摸屏操作

用户可在如图 23.1 所示系统设置菜单里,选择【触摸屏】其状态默认为 "ON",即触摸屏可用,若切换为 "OFF" 状态,触摸屏不可用。

23.5 系统设置

23.5.1 屏保设置

用户可设置【屏保设置】时间,可使示波器在开机状态下无人使用时进入待机保护状态,可保护示波器避免长时间运行,如图 23.5 所示。

图 23.5 屏保设置

23.5.2 按键声音

用户可在如图 23.1 所示系统设置菜单里,进入如图 23.6 所示声音设置菜单项,打开"ON" 状态或关闭 "OFF"状态声音提示。启用声音提示后,在操作菜单或弹出提示消息时,将可 听到蜂鸣器的声音。

图 23.6 声音设置

23.5.3 Aux 输出

用户可以设置后面板【Trig Out】连接器上输出的信号类型。当前,Aux 输出可设置为 触发输出和通过失败(暂不支持)。当设置为触发输入时,示波器产生一次触发,可通过【Trig Out】接口输出一个反映示波器当前捕获率的信号。

23.5.4 波形扩展

用户可设置波形扩展或压缩的基准:

● **相对中心**:改变波形的垂直档位时,波形围绕屏幕中心扩展或压缩;

• **相对地**:改变波形的垂直档位时,波形的接地电平将保持在显示屏同一点,波形以该点为中心扩展或压缩。

按下前面板的【Utility】按键,进入辅助菜单,然后按下【系统】软键,则进入波形扩展基准的设置菜单,如图 23.7 所示。

图 23.7 扩展基准设置

23.6 系统信息

用户可通过系统设置菜单,查看示波器系统信息,如图 23.8 所示。

	系统信息	
出厂商	广州致远电子股份有限公司	
产品型号	ZDS3024 Plus	致远电子官方微信
当前版本	V1.00 3.0.20.61026 64	
序列号	2130110171608160002	
出厂校准	2016-10-27 13:44:12	
当前温度	43.9 °C 32.4 °C	「 <u>」</u> 互动方能致远 共享改变未来

图 23.8 系统信息查看(ZDS4054 Plus 型)

23.7 恢复出厂设置

按下图 23.7 所示系统菜单中的出厂设置之后显示如图 23.9 所示,用户可执行出厂设置 操作,保存参数后点击【恢复出厂设置】,旋转旋钮 A 至【确定】,短按旋钮 A 即可将仪器 所有参数均恢复至默认值,具体如下图 23.9 所示。

图 23.9 恢复出厂设置

23.8 时间设置

用户可设置系统时间值,如图23.10所示; 然后使用旋钮A设置年月日时分秒时间参数值, 各时间参数设置范围如下所述:

- 年: 1900 至 2099;
- 月: 01-12;
- 日:01-31 (28、29或30);
- 时: 00至23;
- 分:00至59;
- 秒:00至59。

设置完后按下【确定】软键,令设置生效。

75 致远电子

图 23.10 时间设置信息

具体的时间显示如下图 23.11 右下角所示,多次点击显示屏右侧软键 "Back",直到当前运行的菜单均关闭完后即可看到时间的显示。

图 23.11 时间显示

23.9 自校准

自校准主要是校准垂直偏移量, DC 耦合模式下, 输入悬空, 正常情况信号电压应与"地 电平"在同一垂直位置, 若不一致, 则需要自校准。

自校准的原理就是不断递归测量修正,最终使"信号"与"地"处于同一垂直位置。

自校准程序可迅速使示波器达到最佳工作状态,以取得最精确的测量值。用户可在任何 时候执行该功能,尤其是当环境温度变化范围达到或超过 5℃时。执行自校正操作之前,请 确保示波器已预热或运行 30 分钟以上,且各输入通道的连接须完全断开。ZDS3000/4000 系 列示波器的自校正过程须耗时 3 钟左右。在自校准菜单可完成自校准的启动和中止操作,图 23.12。自校准过程中会报告校正进度,如图 23.13 所示。

注: 自校正前须确保各输入通道完全断开, 不可连接任何探头。

图 23.12 自校准菜单

				调相供	当前进度:9%		
	Avg-S(C1)			Avg-S(C4)			Ite
Max							
Avg							
_							
1 10 0m	V/div <mark>2</mark> 10.	0mV/div :	10.0mV/div 📕	🛃 10.0mV/div		Trig	1 📼 100 div

图 23.13 自校正进度

注意: 自校正过程中, 大部分按键的功能已被禁用。

24. 常见问题及应对方法

下面列举了示波器在使用过程中可能出现的故障及排查方法。当您遇到这些故障时,请 按照相应的步骤进行处理,如不能处理,请与广州致远电子有限公司联系,同时请提供您机 器的设备信息。

24.1 具体问题阐述

24.1.1 按下电源键,示波器黑屏,没有任何显示

- (1) 检查电源接头是否接好。
- (2) 检查电源开关是否打开。

(3) 检查保险丝是否熔断。如需更换电源保险丝,请更换可靠的保险丝(T级,额定电流 5A,额定电压 250V)。

- (4) 做完上述检查后,重新启动仪器。
- (5) 如果仍然无法正常使用本产品,请与致远电子联系。

24.1.2 有波形显示,但不能稳定下来

- (1) 检查触发信源:检查菜单里的触发信源选择是否与实际使用的信号通道相符。
- (2) 只有设置成合适的触发方式,波形才能稳定显示,如边沿触发、视频触发等。

(3) 尝试改变【触发耦合】为"高频抑制"或"低频抑制"显示,以滤除干扰触发的高频或低频噪声。

- (4) 改变触发释抑设置。
- (5) 查看并设置合适的触发灵敏度。

24.1.3 按下【Run/Stop】键无任何显示

检查触发方式是否为"普通"档,且触发电平是否超出波形范围。如果是,将触发电平位于波形幅值的 50%处;或者设置"触发方式"为"自动"档(按【Auto/Normal】键切换)。 注:使用【Auto Setup】键可自动完成以上设置。

24.1.4 U 盘设备不能被识别

- (1) 检查 U 盘设备是否是 USB2.0、FAT32 格式。
- (2) 检查 U 盘设备是否可靠插入。

(3) 更换其它品牌的 U 盘设备再试。部分品牌的 U 盘识别时间较长,用户可耐心等待一段时间。

(4) 重新启动仪器后,再插入U盘设备进行检查。

24.1.5 测量的电压幅度值比实际值大或者小(注意,此处一般在使用探头时才会出现)

检查通道衰减系数是否与实际使用的探头衰减比例相符。

25. ZDS3000/4000 系列示波器技术参数

所有参数均可保证,但示波器须在规定的操作温度下连续运行 30 分钟以上。

25.1 垂直系统

	说明						
特性	ZDS4054 Plus/	ZDS4034Plus/	ZDS4024 Plus/				
	ZDS3054 Plus	ZDS3034 Plus	ZDS3024 Plus				
通道数	4 4 4						
模拟带宽(-3dB)	500MHz	350MHz	200MHz				
计算的上升时间	≤0.7ns	≤1ns	≤1.75ns				
垂直分辨率		8 bit					
带宽限制		20MHz、OFF					
输入耦合		DC, AC, GND					
怂)阳片		$1M\Omega \pm 1\% \parallel 16 pF \pm 4 pF$					
和八四九	50 Ω±1.5%						
输入灵敏度范围	$2 { m mV/div} \sim 10 { m V/div}$,1-2-5 步进						
最大输入电压(1MΩ)	CAT I 300Vrms						
最大输入电压 $(50\Omega)^{\pm}$	5Vrms						
百冻抛券糕座	2 mV/div ~5 mV/div : ±3%满量程						
且初时目11111月)又	10 mV/div ~ 10 V/div : ±2%满量程						
古流偏我准确由	-2V≤偏移值≤2V : ±0.1 div±2 mV ±2%偏移值						
且·加 <i>阿切</i> 田 朔 文	偏移值>2V,偏移值<-2V: ±0.1 div±2 mV ±3%偏移值						
通道间隔离		>40dB					
低频响应(交流耦合,	<511-						
-3dB)		<u>_</u> 511Z					
偏置范围	2r	nV/div至100mV/div:	<u>+2</u> V				
通直?已回	20	00mV/div 至 10V/div: ±4	OV				
动态范围		屏幕中心±6div					
探头衰减系数		0.1 ×~1000×,1-2-5 倍步进	ŧ				

表 25.1 垂直系统模拟通道特性

注: 50Ω 输入阻抗模式下,若输入电压过大,系统会启动保护模式自动将输入阻抗切换到 $1M\Omega$ 。

25.2 水平系统

表 25.2 水平系统模拟通道

特性	所有 ZDS3000/4000 系列型号
时间档位	500ps/div \sim 1Ks/div,1-2-5 步进
时基精度	25ppm ±5ppm/年(老化)
波形刷新率	ZDS4024 Plus / ZDS4034 Plus /ZDS4054 Plus: 1000,000wfms/s $^{\pm}$,
	ZDS3024 Plus / ZDS3034 Plus /ZDS3054 Plus: 330,000wfms/s $^{\mbox{\tiny IE}}$
延时范围	预触发: ≤存储深度、后触发: 40ms 2000s
时基模式	Y-T, X-Y, ROLL
注: 单通道,点显示模式,10ns/div 时基档位,自动存储深度,输入信号大于5MHz。

25.3 采样系统

模式	说明	
采样方式	实时采样	
最大采样率	每通道 4GSa/s	
存储深度	ZDS4024 Plus/ ZDS4034 Plus/ ZDS4054 Plus ZDS3024 Plus/ ZDS3034 Plus/ ZDS3054 Plus	 単通道: 1.4Kpts、14Kpts、140Kpts、1.4Mpts、 14Mpts、28Mpts、56Mpts、128Mpts、256Mpts、 384Mpts、512Mpts 多通道: 1.4Kpts、14Kpts、140Kpts、1.4Mpts、 14Mpts、28Mpts、56Mpts、128Mpts、256Mpts 単通道: 1.4Kpts、14Kpts、140Kpts、1.4Mpts、 14Mpts、28Mpts、56Mpts、125Mpts、250Mpts 多通道: 14Kpts、140Kpts、1.4Mpts、 28Mpts、56Mpts、125Mpts
峰值检测	所有扫描速度的取样毛刺窄至 1ns	
平均	平均包含 2 至 65536 个波形	
高分辨率	实时平均可降低随机噪声,提高垂直分辨率 9bit: 采样率≤500MSa/s 10bit: 采样率≤125MSa/s 11bit: 采样率≤25MSa/s 12bit: 采样率≤5MSa/s	
滚动	在屏幕上从右向左	E滚动波形,时基档位大于或等于 50ms/div

表 25.3 采集模式

25.4 触发系统

表 25.4 触发系统

特性	说明
触发源	CH1、CH2、CH3、CH4、外触发、电源触发
触发模式	自动、普通
触发耦合	DC、AC、高频抑制(50KHz)、低频抑制(50KHz)
触发释抑范围	8ns 至 16s
触发灵敏度	内部: 0~1.5 div, 探头比率为 1:1 的状态下, 2mv/div~5mv/div 档位下,
	默认为 1.0div, 10mv/div~10v/div 档位下默认为 0.3div。外部: 300mV
触发电平范围	内部:距屏幕中心±5 div,外部:±5V

25.5 触发种类

表 25.5 触发种类

ᆔ므	触发种类		
至 5	基础触发	协议触发	
ZDS4024Plus			
ZDS4034 Plus	边沉 脉旁 左幅 建立和	UART, I2C, SPI, CAN, CAN FD, USB, LIN, SD_SPI,	
ZDS4054 Plus	辺沿、脉宽、欠幅、建立和 保持、延迟、第N边沿、码 型、超时、超幅、斜率、视 频、交替触发、A->B 触发	SD_SD、Wiegand、FlexRay、DS18B20、PS/2、MDIO、	
ZDS3024Plus		DALI、HDQ、1-Wire、IrDA、Manchester、Diff-Manche、	
ZDS3034 Plus		Miller、1553B、 MVB、Modbus、ISO7816、WTB、	
ZDS3054 Plus		SENT、MIPI_DSI、DHT11、SHT11	

表 25.6 基础触发类型说明

触发类型符号	说明
边沿触发(Edge)	分为上升沿触发、下降沿触发和双边沿触发,当边沿穿过触发电平时将
	进行触发
脉宽触发(Pulse)	正脉冲或负脉冲在指定脉宽时间触发
斜率触发 (Slope)	在脉冲边沿速率快于或慢于规定值时触发
如牺钟告(Video)	在 NTSC、PAL 和 SECAM 视频信号的指定行、任意行、偶数场、奇数
1元/yy/用生/文(Video)	场、任意场上触发
欠幅触发(Runt)	当脉冲幅值大于或小于所设置的幅值时可触发
超幅触发(Pos-Runt)	当脉冲幅值大于正常幅值时可触发
初 刑 紬 尖 (D attarre)	两通道间的码型类型有高电平、低电平、忽略、上升沿和下降沿,设置
词至 朏及(Pattern)	完毕后符合条件的波形将进行触发
第N边沿触发(Nth-Edge)	信号在空闲后的第N个边沿触发
延迟钟告(Dalay)	当信源A指定边沿与信源B的指定边沿的时间差满足设置的延迟时间时
更 <u></u> Delay)	产生触发
超时触发(Time-out)	当电平持续时间大于规定时间值时触发
建立/保持触(Setup/Hold)	当满足数据建立或保持的时间时可进行触发
交替触发	通过随机函数选择出是上升沿还是下降沿触发
A->B 触发	A 通道边沿过后, B 通道开始边沿计数,当计数到达 n 则触发

25.6 解码种类

型号	协议类型	协议名称
	汽车电子	CAN、LIN (LIN1.3、LIN2.0)、FlexRay、MVB、CAN-FD、SENT、 WTB
	IC 接口	1-WIRE, I2C, SPI, UART
	电脑周边	USB1.1、PS/2
7D\$ 4024Plus	无线通讯	Manchester、DiffManchester、WIEGAND、Miller、ISO7816
ZDS40241 lus	光电	DALI, MIPI-DSI
ZDS4054 Plus ZDS3024Plus ZDS3034 Plus ZDS3054 Plus	红外线	NEC 红外传输协议分析、Philips RC-5、Philips RC-6、IrDA
	工控自动化	ModBus、RS485、RS232(485 和 232 使用 UART 解码)
	传感器	DS18B20、SHT11、DHT11
	视频、音频	I2S、TDM
	航空	MIL-STD-1553B
	电源管理	HDQ
	存储	SD-SPI、SD-SD
	其他	MDIO

表 25.7 协议解码类型表

表 25.8 解码协议信息表

特性	说明
UART	UART 协议有发送 TXD 和接收 RXD 两路信号,在 10Mb/s 以内的 UART
	(RS-232/422/485/UART)总线可在示波器上进行触发和解码
100	I2C 协议有时钟线 SCL 和数据线 SDA 两路信号,在 20Mb/s 以内 I2C 总线可在示波器上
12C	进行触发和解码
	SPI 有 3 条(或 2 条)信源,时钟线、数据线和片选线(可为 NONE),在 20Mb/s 以内
SPI	SPI 总线可进行触发和解码,通过设置其工作方式,传输模式、数据位宽和(空闲时间)
	即可进行解码
N 11	Modbus 为1条数据信源,在10Mb/s以内并将其波特率,检验位和传输模式参数设置即
Modbus	可进行触发和解码
MIPI-DSI	MIPI-DSI 拥有 2 条数据线 D+和 D-,可使用起始位触发、传输模式、总线转向触发
CAN	CAN 协议有 3 种数据类型, CANH、CANL 和 CAN-DIFF, 可自行配置触发方式
CAN-FD	CAN-FD 协议有 3 种数据类型, CANH、CANL 和 CAN-DIFF, 需设置普通波特率和 FD
	波特率,可自行配置开始位触发和各类数据帧触发
LIN	LIN 协议支持 LIN1.1 和 LIN1.3 版本,在 1Mb/s 以内 LIN 总线上同步间隔、同步场、特定
LIN	ID、特定 ID+特定数据触发

特性	说明
FlexRay	FlexRay 为1条数据线,在20Mb/s 以内 FlexRay 总线可在 TSS 和 frame ID 进行触发
SENT	SENT 为1条数据信源,可设置其数据脉冲个数和时间片宽度,可使用同步场触发和状态场触发
MVB	MVB 为1条数据信源,可设置其波特率,MSD 和 SSD 触发模式进行解码
WTB	WTB 为1条数据信源,可设置其波特率和触发模式进行解码
1553B	1553B为1条数据信源,可设置起始位触发和地址触发
ISO7816	ISO7816 拥有 2 条信源,复位信源和数据信源,可调节其波特率,使用 TS 和 RST 触发进行解码
TDM	TDM 有 3 条信源,时钟线、数据线和片选信号线
IIS	IIS 有 3 条信源,时钟线、数据线和通道信源选择,协议格式可选 IIS、Left 和 Right
USB	USB 有 2 条信源, D+和 D- 在 20Mb/s 以内 USB2.0(低速+全速)总线上输出包、输入包、起始包、建立包、DATA0、 DATA1、回应包等触发。每一种触发方式可进一步指定相应包的具体信息,如起始包 要设置扩展参数和账号值,建立包要设置扩展参数、地址值和端口值等
SD_SPI	SD_SPI 有 2 条信源,时钟信源和命令信源 在 20Mb/s 的 SD 总线(SPI 模式)上,指定指令或指定指令+参数触发和解码
SD_SD	在 20Mb/s 的 SD 总线(SD 模式)上,指定指令或指定指令+参数触发
Wiegand	在 Wiegand 总线(26Bit、39Bit、44Bit、自定义帧格式)上遇到指定的 OEM、FC、CC 段或者数据为指定数值时触发。支持根据需要屏蔽某些字段
DS18B20	DS18B20为1条数据通道,可设置解码温度分辨率为9、10、11、12位进行解码;在 DS18B20总线上开始位、指定 ROM 指令、指定 RAM 指令触发
PS/2	PS/2 有 2 条信源,时钟信源和数据信源 在 1Mb/s 以内 PS/2 总线上的开始位、数据触发,支持主机到从机和从机到主机触发
MDIO	MDIO 有 2 条信源,时钟信源 MDC 和数据信源 MDI 支持在 MDIO 总线上对 ST 段、OP 段、PHYAD 段、REGAD 段和 DATA 段进行触发, 同时可在 LSB 和 MSB 两种传输模式下进行解码
DALI	DALI 有 1 条数据信源,在 DALI 总线上遇到指定的 Forward19、Forward27、Backward 帧时触发解码
HDQ	HDQ 有 1 条数据信源,可设置数据长度为 8 位或 16 位进行解码 在 HDQ 总线上的复位段、指定指令触发
1-Wire	1-Wire 有 1 条数据信源,其速度模式可设置为标准或驱动进行解码 在 1-Wire 总线(低速、高速模式)上开始位、指定 ROM 指令触发
IrDA	IrDA 有 1 条数据信源,可设置插件模式为 SIR、HDLC、CIR 和 FIR,可按照协议自行 设置波特率,数据宽度和数据传输模式进行解码 在 IrDA 总线上,支持 SIR、HDLC、CIR、FIR 插件的开始位、数据触发
Miller	Miller 有 1 条数据信源,可自行设置比特率进行解码,在 Miller 总线上指定数据传输模式进行数据触发
Manchester	Manchester 有 1 条数据信源,编码模式可选 G.E 或者 IEEE 进行解码,在 Manchester 总线上指定包起始位触发

特性	说明
Diff-Manche	Diff-Manche 有1条数据信源,编码模式可选 G.E 或者 IEEE 进行解码,在差分
	Manchester 总线上指定包起始位触发
DHT11	DHT11 有 1 条数据信源,在 DHT11 总线上,起始位触发
SHT11	SHT11 有 1 条数据信源,在 SHT11 总线上,指定指令触发
NEC	NEC 有1条数据信源,通过设置电平反相和载波调解进行解码,无协议触发
RC5	RC5 有 1 条数据信源,通过设置电平反相和载波调解进行解码,无协议触发
RC6	RC6 有 1 条数据信源,通过设置电平反相和载波调解进行解码,无协议触发

25.7 测量参数

表 25.9 测量参数

特性	说明	
光标测量	同时显示 X1、X2、 Δ X、1/ Δ X、Y1、Y2、 Δ Y、1/ Δ Y	
	电压参数 (19 种)	峰峰值、幅度、最大值、最小值、顶部值、底部值、正过冲、负过冲、 正预冲、负预冲、平均值-周期、平均值-全屏、直流有效值-周期、 直流有效值-全屏、交流有效值-周期、交流有效值-全屏、比率-周期、 比率-全屏、校准平均值
参数测量 (53 种)	时间参数 (23种)	周期、频率、上升时间、下降时间、正脉冲宽度、负脉冲宽度、正占空 比、负占空比、突发宽度、串脉冲长度、X@min、X@max、延迟 1↑→2↑、 延迟 1↓→2↓、延迟 1↑→2↓、延迟 1↓→2↑、相位 1↑→2↑、相位 1↓→2↓、 建立时间、保持时间、建立保持比率、 波特率、CAN 总线负载率
	计数 (5 种)	上升沿计数、下降沿计数、正脉冲计数、负脉冲计数、触发计数器
	其他	面积-周期、面积-全屏、正面积-周期、负面积-周期、正面积-全屏、
	(6种)	负面积-全屏
测量数量	同时显示 24 种	
测量统计	当前值、最大值、最小值、平均值、标准差、统计次数	
硬件频率计	支持,最大频率为示波器带宽	

注:波特率、CAN 总线负载率只有带 ZDS4000 Plus 的型号才支持。

25.8 波形数学运算

表 25.10 波形数学运算

特性	说明	
	基本运算: A+B、A-B、A×B、A/B、积分、微分;	
	高级运算: 包含基本运算符(+、-、X、/)、逻辑运算符(>、<、=、≥、≤、!=、	
波形运算	&&、 、()、!()、函数运算(Intg、Diff、Ln、Exp、Sqrt、Sin、Cos、Tan)	
	等组合而成的多项表达式运算,如 2CH1+Diff(CH2)x3CH3;	
	趋势图: 频率、周期	
FFT	傅里叶变换	
FFT 样本点数	4Mpts	

特性	说明
FFT 显示模式	dBm、Vrms、Ampl、PSD
FFT 窗类型	Rectangle, Hamming, Hanning, Blackman-Harris
硬件滤波	自定义滤波频率

25.9 显示特性

表 25.11 显示特性

特性	说明
显示器类型	9.0 英寸 TFT 触摸屏
显示器分辨率	800 水平×480 垂直
波形类型	点、矢量
显示模式	普通、余辉、色温
余辉时间	100ms、200ms、500ms、1s、2s、5s、10s、20s、50s、无限
刻度	14div(水平)×8div(垂直)

25.10 输入/输出端口

表 25.12 输入/输出端口

端口类型	说明
USB HOST	连接 U 盘
USB DEVICE	连接 PC
LAN	RJ-45 连接器, 支持 10/100BASE-T
VGA	VGA 显示输出接口
Trig Out	后面板BNC连接器在示波器触发时提供脉冲输出
探头补偿输出	前面板针脚;幅度:约3.0V、频率:1KHz

25.11 普通技术规格

表 25.13 普通技术规格

电源	说明
电源电压	85 — 265V~
电源频率	47—63 Hz
功率	100W max
保险丝	5A, T级, 220V
机械规格	说明
尺寸	宽×高×深 = 427mm × 204mm × 120mm
重量	净重: 4.5Kg; 毛重: 6.7Kg
环境	说明
温度范围	操作: 10℃~+40℃、储存: -20℃~+70℃
湿度范围	≤60%相对湿度
冷却方法	风扇

环境	说明
海拔高度	操作 3000 米以下、非操作 12000 米以下
电磁兼容	2014/30/EU、EN61326-1:2013
安全性	EN61010-1: 2010, IEC61010-1: 2010, GB4793.1-2007

25.12 **配件**

ZDS3000/4000系列示波器的配件信息见表 25.14 和表 25.15。

表 25.14 标准配件

配件名称	描述
USB 通信电缆	实现 PC 和示波器通信
探头	500MHz、350MHz 示波器每通道标配 1 套 10:1 无源探头,
	200MHz 示波器每通道标配 1 套无源探头(有 X1 和 X10 档)
电源线	用于示波器供电
资料光盘	产品相关电子版资料
保修卡	申请产品保修服务

注: 非本公司探头使用带来的危险本公司不承担责任。

表 25.15 选配件

配件名称	描述
电流探头	用于电流信号的测量
高压差分探头	用于高压测量、悬浮电压测量
通过式终端	50Ω 匹配

26. **免责声明**

此用户手册的著作权属于广州致远电子有限公司。任何个人或者是单位,未经广州致远 电子有限公司同意,私自使用此用户手册进行商业往来,导致或产生的任何第三方主张的任 何索赔、要求或损失,包括合理的律师费,由您赔偿,广州致远电子有限公司与合作公司、 关联公司不承担任何法律责任。

广州致远电子有限公司特别提醒用户注意:广州致远电子有限公司为了保障公司业务发展和调整的自主权,拥有随时自行修改此用户手册而不通知用户的权利。如有必要,修改会以通告形式公布于广州致远电子有限公司网站重要页面上。

销售与服务网络

广州致远电子有限公司

地址: 广州市天河区车陂路黄洲工业区 7 栋 2 楼 邮编: 510660 网址: <u>www.zlg.cn</u>

全国销售与服务电话: 400-888-4005

销售与服务网络:

广州总公司 广州市天河区车陂路黄洲工业区 7 栋 2 楼 电话: 020-22644261 020-28872342

北京分公司

北京市海淀区紫金数码园 3 号楼(东华合创大厦) 8 层 0802 室 电话: 010-62536178

武汉分公司

湖北省武汉市洪山区民族大道江南家园 1 栋 3 单元 602 电话: 027-62436478

杭州分公司

杭州市天目山路 217 号江南电子大厦 502 室 电话: 0571-86483297

郑州分公司

河南省郑州市中原区建设西路与百花路东南角锦绣 华庭 A 座 1502 电话: 0371-66868897

西安办事处 西安市长安北路 54 号太平洋大厦 1201 室 电话: 029-87881295

南京分公司 南京市秦淮区汉中路 27 号友谊广场 17 层 F、G 区 电话: 025-68123936

全国服务电话: 400-888-4005

上海分公司 上海市北京东路 668 号科技京城东楼 12E 室 电话: 021-53865720

深圳分公司 深圳市福田区深南中路 2072 号电子大厦 12 楼 1203 室 电话: 0755-83780058

青岛办事处 山东省青岛市李沧区青山路 689 号宝龙公寓 3 号楼 70 室 电话: 0532-58879795

成都分公司 成都市一环路南二段 1 号数码科技大厦 319 室 电话: 028-85439836-805

重庆分公司 重庆市九龙坡区石桥铺科园一路二号大西洋国际大 厦(百脑会)2705室 电话:023-68797619

天津办事处 天津市河东区津塘路与十一经路交口鼎泰大厦 1004 电话: 022-24216606

厦门办事处: 18650195588 沈阳办事处: 18940035738

请您用以上方式联系我们,我们会为您安排样机现场演示,感谢您对我公司产品的关注!